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Kurzfassung

Hintergrund: Der Beitrag technologischer Errungenschaften im medizinischen Sektor wächst in

jeglicher Hinsicht. Auch Anwendungen, die des Machine Learnings entsprungen sind fördern den

Fortschritt in diesem Bereich. Die Vorhersage vom Verlust einer Niere als folge einer Nieren-

transplantation ist Teil dieses Fortschritts. Das Ziel dieser Arbeit ist es eine Deep Learning Model

zu implementieren, welches textuelle und tabellarische Daten vereint um den Verlust einer Niere

in einem kurz zeit Szenario vorherzusagen. Folglich ist unsere Hypothese, dass die Vorhersage,

gegenüber einer Random Forest Baseline, welche nur tabellarische Daten nutzt verbessert werden

kann, da wir der Ansicht sind, dass der Inhalt von medizinischem Text komplementär zu dem von

tabellarischen Daten ist. Mit der Aufgabe einhergehende Herausforderungen ist die Balance der

Klassen des Datensets, sowie unstrukturierter Text.

Methodik: Die Daten wurden durch einer Vielzahl von Maßnahmen gesäubert und aufbere-

itet. Des Weiteren wurde das State of the Art NLP model BERT genutzt um Embeddings zu

erstellen. Als ersten Schritt haben wir zwei Multi-Layer Perceptrons, für die jeweiligen Daten-

typen, programmiert und dieser eine Mehrzahl von Data-Balancing-Experimenten unterzogen, um

schlussendlich ein ensemble model zu erzeugen.

Resultate: Usere Resultate zeigen deutlich, dass das Miteinbeziehn von medizinischem Text die

Vorhersage verbessert. Es war uns möglich den F1-Score unserer Baseline um 6% zu schlagen

und damit auf einen neuen Höchstwert von 59% F1-Score anzuheben. Zusätzlich konnten wir

eine inhaltlich starke Tendenz der Text Daten zum Abstoßen von Nieren offenlegen.

Fazit: In dieser Arbeit war es uns möglich aufzuzeigen, dass klinischer Text komplementäre zu

tabellarischen Daten ist und somit eine Verbesserung der Vorhersage von Nierenverlust erreicht

werden kann.
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Abstract

Background: As technology’s contributions to the medical sector rises in several fields, appli-

cations of machine learning have also made vital contributions. The prediction of future kidney

graft loss following a transplantation is one of them. The goal of this work is it to deliver a deep

learning model for the prediction of graft loss in a short-term scenario via using text and tabular

data. We hypothesise that combining the text and tabular medical data will improve the prediction

over a random forest baseline only using tabular data. Challenges associated with this task are the

strong bias towards success in the dataset and the individualistic nature of unstructured text.

Methods: We extensively cleaned and prepared the tabular and text data using several measures.

Furthermore, the state of the art NLP model BERT was used to create text embeddings. We first

created two separate multi-layer perceptrons and conducted multiple data balancing technique

experiments, to lastly build an ensemble model.

Results: Our results show clearly that adding text to the prediction increases the capabilities of

our model and outperforms the baseline by 6% to an overall 59% F1-Score. Moreover, we found

a strong bias in the text data towards failure, since physicians tend to only note down observations

contributing to a disease.

Conclusion: In our work we were able to show that adding clinical text to the prediction of kidney

graft loss increases the the scores of the prediction overall.
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1 Introduction

Technology found its way into the medical domain through several successful implementations.

Recent examples include the surgical system Da Vinci, supporting surgeons during surgery [9],

3D printed hip prostheses that grant every recipient a replacement that is easily adjusted to their

own hip [10] and also the Smart Health Record, which aims to collect the medical history of

patients. [11] More specific disciplines like Machine Learning (ML) have proven successful, with

ambitions like diagnostics and disease prediction, which are only possible with a vast amount of

collected patient data. [12,13] The methods of machine learning are a valid choice for diagnostics,

since making a diagnosis depends on evaluating data, finding coherences and drawing a conclusion

from them. Generally speaking a classification task with ML works similarly.

A disease that is commonly targeted by the data science community is the Acute Kidney Injury

(AKI). When experiencing an AKI the functionalities of the kidney abruptly stop working, putting

the patient into a life-threatening situation. An AKI is traditionally diagnosed through the crea-

tinine blood level and the urine output of a patient. Depending on these metrics it can occur in

different stages defined by the RIFLE score. [14] However the technology of machine learning is

able to incorporate more variables than the ones used by the RIFLE score and is therefore capable

of determining an AKI in either real-time or the future. Several papers on this topic have already

been published with varying success, [15] showing that with the right data and algorithm a solid

model can be created.

1.1 Motivation

Like most internal organs the kidney is a vital one. Besides synthesising urine and routing it

through the body, the kidney conducts several more tasks. Filtering toxins from the bloodstream,

as well as excess water to eject as urine. Furthermore, the kidney regulates the acidity measured

in the cardio vascular system and also produces hormones like Erythropoietin to control the pro-

duction of red blood cells in the bone marrow. Additionally, the concentration of minerals such as

potassium, sodium and calcium are influenced by the kidney. [16] However to support a sustain-

able cohabit with an owner and its kidney some resources are needed.

The Resource Physician According to the OECD, 357.401 individuals, or roughly 0.43% of the

German population, where actively practicing as a physician in 2018. Even though Germany has

a high per capita number of medical doctors compared to other European countries (Italy 0.33%,

France 0.31%, UK 0.28%), there is still a shortage of medical personnel in the country. The overall

1
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number rose by about 50% since 1993, which is unproportional compared to the population growth

of 2.7%. However, due to an ever aging population, more doctors work part-time and the burden of

bureaucracy, a growth rate of 50% is not sufficient. Technology could be the key to compensating

for the lack of medical professionals. [17, 18]

Escaping Death has its Cost Considering the vast duties the kidney fulfills on a daily basis, a

End-Stage Renal Disease is a life-threatening condition. Nevertheless the lifespan of a patient

can be extended through the process of dialysis, which substitutes the kidney and supplements

the tasks a damaged kidney can no longer perform by purifying the blood. [16] While the artificial

blood purification will extend the life expectancy of a patient by 10 to 20 years, the annual costs for

dialysis treatment are around 40,000C. Alternatively, a kidney transplant allows most patients to

experience double the lifetime and the annual costs are only one third as those of dialysis treatment

(except for during the year of the transplantation). [19, 20] Additional life time is the main reason

for choosing transplant over of a permanent dialysis treatment, but transplantation can have several

other drawbacks.

The Resource Kidney Regarding the risks and resources of a kidney transplant, the 2017 Annual

Data Report for kidney shows optimistic numbers related to short- and long-term unadjusted allo-

graft survival and a decline of the adult waiting list. Likewise, the number of successful deceased

donor kidney transplants grew. Moreover, the number of living donor transplantation, which offer

a higher survivability than a deceased donor transplant, keeps falling, but the absolute number

of transplants rose. Despite the waiting list length dropping from a all time high, an shortage of

donor kidneys still persists and the average time frame for a patient to receive treatment is three

years. [21]

Lucky enough to get one, but... Even when a patient is able to receive a kidney transplant,

acute kidney injury, which is associated with allograft loss and patient mortality, is common. The

reasons for an AKI after a transplantation are manifold and include, for example, acute cellular

rejection or a renal artery thrombosis. [22] The probability for a hospitalized patient to develop an

AKI is between 2% and 18%, whereas these numbers are even higher for patients in the intensive

care unit, ranging from 22% to 57%. Alarmingly high is the number of cases that go undetected,

ranging from 57% to 75.6%. [23] Direct 11% of patients decease due to the fact of not detecting

an AKI early. [24] However, detecting of an AKI is difficult and mostly possible by observing a

loss of organ function. [25]

Conclusion Despite the fact that the absolute number of kidney transplants is at a historic high

and the waiting list is shrinking, transplant success is still vital, since a scarcity of available organs

persists. Also the number of living donor transplants dropped, which represents a decline in the

quality of transplants since the majority of donor organs are deceased donor kidneys. The high

percentage of patients who develop AKI is as alarming as the amount of undetected AKIs. The

high rate of undetected AKIs, however, is understandable as a wide multitude of factors play a role

in the development of an AKI and most commonly damage can only be detected with certainty

when a loss of organ function is present. On top of all of this, the lack of full-time medical experts

makes predicting graft loss even more difficult. The motivation of this thesis is it to reduce the

number of undetected AKI cases and to compensate for the low number of medical staff through
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the means of a data driven prediction system that helps prevent a possible demise of patients and

in doing so, saves cost and possibly extends patients’ life expectancies.

1.2 Hypothesis

Observing the baseline model used in the task prior to this thesis. [26] A prediction was performed

using only numerical and categorical features. However T-Base holds additional data, as the data

used in the Random Forest baseline approach. The spared data includes a vast amount of unstruc-

tured clinical text. Taking this into account the hypothesis of this thesis are:

1. That medical text holds information complementary to the tabular data of the patient and

will therefore, by combining the two data types, improve the performance of the model.

2. An MLP model using a balancing technique will outperform a RF model on the same im-

balanced dataset.

3. Further pre-training BERT with AKI risk-factors that will improve graft loss prediction on

clinical notes.

The hypothesis will further be refereed to as fist, second or third hypothesis.

1.3 Problem Definition

There is already a multitude of papers on AKI prediction published. However most of the pub-

lished papers concentrate on categorical and numerical values, such as age, gender, ethnicity and

creatinine, urine output, blood pressure. [15] Few papers do a prediction based on text corpora

form electronic health records and numerical, as well as categorical values. [12, 27] An absolute

absence of research can be observed when it comes to German clinical text for the prediction of

AKI. This might be because of strict European data privacy laws and a insufficient digital infras-

tructure, however for this thesis the Charité Berlin offered to provide a data collection of patients

that underwent a kidney transplantation.

The Baseline Prior to this thesis, work has already been conducted on the dataset in terms of Graft

loss prediction. [26] This work is a continuation of it. The task stays the same, but the results will

be improved through the addition of further methods and features.

Challenges Given the dataset the goal is to predict the last possible stage of an AKI - Graft loss

- after a kidney transplantation for a short term scenario. The short term time span is defined as

12-18 Months after the date of transplantation. This means that data only from the beginning of a

patients medical history, until one year after his/her transplantation took place can be used and a

prediction of six months into the future needs to be made.

The dataset provided is strongly imbalanced towards successful transplantation’s, making it dif-

ficult to learn the failure class. Further the number of examples in the dataset it rather small

compared with the task and expected input vector.
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The appropriated text corpus is unstructured and drafted by multiple people, which leads text

that mean the same but are structured and written completely different. Additionally spelling

mistakes or personal text stylistic choice might keep the model from learning. Lastly unwanted,

nonsensical or repeating text chunks can also be a obstacle, rising the size text embedding or dilute

the important information.

Solutions To prove our fist hypothesis a model that is able to handle both types of data is needed.

We decided to use an ensemble architecture, to combine the embeddings. Further a technique to

handle the imbalance of the dataset is need and a text cleaning pipeline to make the text as uniform

as possible. The second hypothesis will be proven by working towards the first one, as the tabular

MLP model will be part of the ensemble model. For proving our third hypothesis we will fine-tune

a BERT model on the RIFLE risk-factors and evaluate of the predictions made will improve.

Main Contributions In the course of the thesis we provide multiple contributions (i) An approach

to clean medical text data, (ii) An MLP model to combine text and tabular data, (iii) introduce a

new NLP fine-tune task using AKI risk-factors.

1.4 Methodology

In this part the methodology of this thesis will be briefly outlined. A full-fledged overview of the

used methods can be found in chapter 4.

Data Preparation Measures When exploring the text corpora of the available data, the state of

the data was insufficient for conversion to text features. Several measures have been taken to

reduce the found flaws. We used various regular expressions to remove information that holds no

value for the prediction. Furthermore, we replaced or removed unknown or nonsensical characters

and replaced medical abbreviations with their fully worded counterparts and much more. For the

preparation of the tabular data, a pipeline provided by our baseline was used.

Baseline As our baseline we chose a thesis prior to ours, which uses the same source data. [26]

The model of choice in this case was a Random Forest.

Experiments To generate text embeddings a model is needed that transforms plain text into

processible representations for machine learning models. There are several different methods

to conduct such a conversion. Well known models include Word2Vec [28], FastText [29] or

GloVe [30].However we decided to go for the state-of-the-art model BERT [3]. BERT can be

retrained for different languages as well as fine-tuned for specific tasks. To find the best fitting

variety of BERT, a comparison of the BERT models gBERT-base [6], base-bert-german [5] and

MedBert1 has been conducted on the medical corpus at free disposal during the project. Sev-

eral data balancing techniques and strategies to handle long text have been compared. The same

balancing techniques have been applied to the tabular model.

Models Furthermore, we built individual models for both of the data types given and applied the

best-suited techniques evaluated through the experiments. To finally combine their embeddings to

1https://huggingface.co/smanjil/German-MedBERT
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form an ensemble model which considers both data types.

1.5 Thesis structure

The following passage describes the content and structure of this thesis.

In Chapter 2 the fundamental important to understand the contents of this thesis are covered. First,

an explanation of metrics to evaluate classification algorithms is given. Next, a short description

of model architectures like Random Forest and feedforward networks is given. Finally, we will

cover the relevant balancing techniques used in the experiments.

The 3rd Chapter is primarily concerned with the data used. We first go over the database provided

and then cover our cohort selection as well as the selection of features. During this thesis a

temporary task was given to us as we were unable to work on the actual data. We analysed the

MIMI-III dataset and our findings are laid out in section 3.4.

Chapter 4 is the main part of this work. Here we cover all the approaches we implemented.

Starting with the baseline model and going on with the implementation of our tabular model to the

preparation of the text data and model, as well as fine-tuning, and ending it with our attempt of the

ensemble model.

Chapter 5 covers the environments used by us and their capacity. Furthermore, a full data flow

diagram will be explained.

In Chapter 6 the results of all experiments will be examined. Furthermore, an error analysis will

be conducted. For all results we first explain them and then give an interpretation. Firstly, the

results produced by the tabular model will be investigated and interpreted, followed by the text

and ensemble model. Finally, the results of iteration two text and the fine-tuning will be revealed.

Chapter 7, the final chapter, provides a discussion of the whole project covering things that went

well and not so well. Furthermore, we give an extensive future outlook and suggestions for im-

provement.



2 Fundamentals

In this chapter the fundamental knowledge needed to understand this thesis is discuss. First metrics

relevant for the evaluation of a classification model are explained and followed up by the types of

model architectures. Lastly a deep dive into the data balancing techniques, considered to solve the

task, is conducted. Many of the concepts introduced in this section will reappear throughout the

thesis.

2.1 Evaluation Metrics for Classification

When a binary classification Machine Learning (ML) model has been implemented, its effective-

ness and efficiency need to be measurable to make the performance of the ML model comparable.

There are established metrics which are approved by the scientific community, however, there is no

consensus on a unified measure. [4] With this being the case, the chosen evaluation methods cover

widely used metrics like the F1-Score but rarer metrics that add more points to the evaluation, like

the Matthews correlation coefficient, in hopes of creating a more sustainable evaluation.

2.1.1 Confusion matrix

The confusion matrix forms the foundation of the evaluation of binary classification. To define

the confusion matrix, consider a dataset where every element of the data is either classified as

positive or negative. The given classifications are deemed to be the ground truth. Further consider

a classifier operating on the given dataset. The classifier’s task is to estimate which label (positive

or negative) to assign to an element of the set. If the label assigned by the classifier is equal to

the ground truth label, the comparison between these labels will be considered true. Should the

classifier miss-classify (confuse) an example, that example will be considered false. Table 2.1 can

be derived form this definition. [31]

The values established by the confusion matrix (TP, TN, FN, FP) can be further used to calculate

relevant metrics for the assessment of classification algorithms. Table 2.2 shows the basic metrics

and their formulas.

In the context of this paper, only recall and precision will be relevant. Recall can be defined as

the probability that a randomly chosen instance will be predicted to be positive, whereas precision

can be described as the probability that a randomly chosen, predicted instance (positive) will be

relevant. Using recall and precision it is possible to calculate the first metric - accuracy. [32]

6
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Table 2.1: Confusion matrix [4]

Table 2.2: Classwise performance measures [4]

2.1.2 Accuracy

Accuracy can be calculated through a formula that uses all the values provided by the confusion

matrix.

accuracy =
TP + TN

TP + TN + FP + FN

The value provided by this formula ranges from [0,+1] (1 equals a perfect classification rate) and

can be interpreted as the ratio between all data instances that have been labeled true by the classifier

and all instances of a given dataset. As simple and logical as this metric seems, it fails to provide an

accurate score for unbalanced datasets (an unbalanced dataset is one which houses a significantly

larger number of data pieces that are labeled with the same label) since, when a dataset is strongly

biased towards one label, the algorithm will learn to classify those labels effectively, hence the

true positive or true negative value will be high and predominate in the overall calculation. [4]
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2.1.3 F1-Score

Statistics defines the F1-Score the measurement of the accuracy of a test. It is widely used to

measure the performance of binary and multi classifications of machine learning algorithms. [4]

The result of the F1-Score ranges between [0,+1] and can be interpreted as the weight average of

the metric’s precision and recall. Mathematically the F1-Score can be calculated as the harmonic

mean of precision and recall. The following is the formula of the F1-Score. [33]

F1 = 2 · precision · recall
precision+ recall

Although the F1-Score is frequently used to evaluate confusion matrix base Machine Learning

models, it has two deficiencies. Firstly, the F1-Score does not take into account samples correctly

classified as negative. Secondly, the F1 is susceptible to class swapping (class swapping refers to

swapping the positive and negative labels of an dataset). The second issue can be overcome by a

macro/micro averaging procedure, nevertheless this technique is biased. [4]

Despite the flaws of accuracy and the F1-Score, the decision was made to include them as metrics

since they are still frequently used and appear as measurements in the baseline.

2.1.4 Fbeta-Score

For some evaluations recall might be more important than precision. For example, when predicting

disease, where more attention is directed towards predicting the disease rather then a healthy

individual, since miss-classifying a healthy person as sick has no repercussions in most cases.

Fβ = (1 + β2) · precision · recall
(β2 · precision) + recall

The Fβ-Score offers the possibility to either weight recall or precision higher. By increasing β the

importance of recall rises and would be weighted twice as important as precision. Lowering the β

has a contrary effect - less weight to recall more to precision. [34]

2.1.5 ROC-AUC

The ROC (Receiver Operating Characteristics) curve visualizes the ratio of the sensitivity and

specificity (see table 2.2) for a classification task. The values of the curves coordinate system

range between [0, 1], whereby the x-axis represents the specificity and the y-axis represents the

sensitivity. To compute the curve a threshold is used to determine how an element should be

classified. Calculating the sensitivity and specificity for every threshold and plotting the results

will issue the ROC curve. [35]

The AUC (Area under curve) score can be used to evaluate the efficiency of classification models

and it can be calculated through the means of the ROC curve. [36] The highest possible AUC

score is a 1, which can be interpreted as a perfect classification. While the lowest number to score
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is a 0.5 which is the equivalent of random guessing. [35] Realistically, the value cant be smaller

than 0.5, since random guessing produces a diagonal line between [0, 0] and [1, 1]. The important

statistical quality of the AUC is that the AUC of a classifier is equivalent to the probability that the

classifier will rank a randomly chosen positive instance higher than a randomly chosen negative

instance. [37] According to Fawcett et al. the AUC score can be calculated using a trapezoidal

rule base algorithm shown in [37].

The ROC-AUC addresses the problems mentioned for accuracy [38] and was also included in the

baseline.

2.1.6 Matthews correlation coefficient

To address the issues connected to theF1-Score Chicco and Jurman suggest the use of the Matthews

correlation coefficient (MCC) for binary classification algorithms. According to their work, the

MCC is the only metric that produces a high score only when classifications, both positive and

negative data instances, were predominantly predicted correctly.

MCC =
TP · TN − FP · FN√

(TP + FP ) · (TP + FN) · (TN + FP ) · (TN + FN)

The result of the formula ranges from [−1,+1]. A 1 is consider to be a perfect classification, while

a -1 is a complete misclassification. [4]

Since the dataset that was used in this thesis also has a strong tendency towards patients with a

successful transplantation, the decision was made to include the MCC.

2.2 Random Forest

The general idea of decision trees is to split a dataset into two portions based on a certain rule until

a predefined condition has been met. The task of a decision tree is dependent on the predefined

stopping condition and the rule set on how to split the data, so it can be used for regression

or classification. A strong flaw of decision trees is that they are prone to overfit, thus are not

able to generalize very well. [39] Following up on the concept of the decision tree, Breiman

published the random forest paper in 2001. [40] In his work he proposed an ensemble decision

tree learning algorithm that averages the prediction of a multitude of trees to calculate its final

decision. Furthermore, the trees use a bootstrap aggregation strategy (bagging), which makes

overfitting less likely. This strategy is based on using bootstrap samples rather than the originals.

Figure 2.1 shows the structure of a random forest. [39]
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Figure 2.1: Illustration showing the mechanism of a random forest. The figure shows how the data
flows through a RF model and finally does a voting on the classification.

2.3 Deep Feedforward Neural Networks

The term deep feedforward neural network, also synonymously used as multilayer perceptron

(MLP) or just feedforward neural network, covers a concept which aims to approximate a function

f*. MLPs are the principle deep learning models. The first instance of an application using an MLP

can be dated to the year 1943, by Warren McCulloch and Walter Pitts. [41] [] Since then MLPs

have been used for countless tasks. A generic example includes a classifier that categorises the

input x to a category y using the function y = f*(x). More specifically, an MLP learns the values

of the input θ for a mapping y = f(x;θ) to approximate the most fitting function. To differentiate

them from recurrent neural networks, FNNs have no feedback connections. [42]

Feedforward Neural Networks Architecture MLPs are called networks, because they are com-

prised of a multitude of functions that follow in succession. The functions hosted by an MLP are

referred to as layers, the first layer is called the input layer, while the last layer is considered to be

the output layer. Figure 2.2 visualizes the architecture of a simple MLP. The individual layers are

made up of perceptions or neurons. The input layer usually has as many perceptions as a given

task provides parameters and it can not derive from that. On the other hand, the output layer, at

least of a classification task, has the same number of perceptions and classes. In between those

two are what is called the hidden layers. The hidden layers can be of any number of perceptions,

however with higher numbers comes a higher processing time. To let data flow to the network,

each layer is fully connected to the next one.

Furthermore, each neuron has a weight and activation function and each connection also features

a weight. Taking all the outputs of the previous layer, the product of the weights and inputs

are passed to the activation function which "squashes" the result. [42] There are several possible
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Figure 2.2: (a) Perceptron or Sigmoid neuron, (b) Model for Artificial Neural Net. [1]

activation functions that can be applied. The most common ones are ReLu, Sigmoid and Softmax.

[43] A full illustration of the multi-layer perceptron can be seen in figure 2.2.

Neuroscience inspired the idea for the feedforward network, as it is supposed to mimics the neu-

rons in the human brain. [42]

Cost Function As calculating the perfect weights for a FNN is impossible since there are too

many unknown variables, a cost function, also referred to as loss function, is used to calculate the

model’s error rate and adjust the weights via back propagation. [43]

Gradient-Based Learning Adjusting the weights of the perceptions is possible by using an opti-

mization algorithm that is referred to as gradient descent, which arranges the weights of the neuron

by minimizing the result of the cost function. An opportunity for a gradient descent based learning

approach always arises when applying linear algebra fails. The search for the optimal weights is

an iterative process, which, when repeated often enough, will lead to the minimum cost for the

task and thus will produce the optimum weights.

2.4 Transformers

The model architecture of a transformer (figure 2.3) draws on the dependencies between the in-

put and output of an encoder-decoder structure and self-attention mechanisms. Transformers are

feedforward networks that are highly parallelizable, thus abolishing the constraint of sequential

computation seen in recurrent neural networks (RNN). The original implementation by Vaswani

et al. beat multiple state-of-the-art translation models while only needing a fraction of the pro-

cessing power and time for training their model. [2]

The attention mechanism has been introduced by Bahdanau et al. to deal with the major bottleneck

of fixed-length vectors in the context of machine translation seen in RNN sequence to sequence

models. The problem usually appears when translating sentences that are longer then most sen-

tences in a training set. Bahdanau mitigated the problem by calculating hidden states during the

encoder phase for each part of the sequence and passing those to the decoder stage. The decoder

is then able to create context vectors from the hidden states and is thus able to compute long

sentences. [44]
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Figure 2.3: Concept of the transformer architecture as proposed by [2]

2.5 BERT

Building upon the blocks of Vaswani’s work [2], Devlin et al. published the NLP model bidi-

rectional encoder representations from transformers (BERT) in 2018. [3] Arguing that techniques

used for per-taining by language models back then were not optimal due to their unidirectionality,

Devlin proposed a bidirectional fine-tuning approach. Fine-tuning usually refers to a pre-training

practice where a model first gets trained on a general task and, in a second step, fine-tuned on a

particular task. [45]

The architecture of BERT is almost identical to the design of Vaswani (figure 2.3), differences can

be noted on the output layers or heads. However, the major difference to [2] can be found in its

approach to training the model. Two unsupervised tasks are assigned to the model.

• Masked language model - Applying MLM for training includes masking 15% of tokens

randomly selected with the [MASK] token. Then BERT is tasked with predicting those

tokens, based on their surrounding context. However, a discrepancy between fine-tuning

and pre-training is that during fine-tuning the [MASK] token is not available. To alleviate

the negative effects of this, selected tokens do not always get replaced wit the [MASK]

token. Instead only 80% of selected tokens get replaced with [MASK], 10% get substituted

with a random token and 10% are left unchanged.

• Next sentence prediction - The objective of next sentence prediction consists of predicting

the next sentence from a pair of sentences. 50% of the time the given sentence is actually

the subsequent sentence of the sentence that has been looked at and the other 50% of the

time it is a random sentence from the corpus.
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Another peculiarity is how BERT treads word embeddings. When encoding corpora, BERT has

four more tokens that are used to point out certain conditions. As seen in figure 2.4 BERT uses

the special token [CLS] to announce the beginning of a sequence and to separate the beginning of

a new sentence. In a series of multiple sequences the [SEP] token is used. Furthermore, the [CLS]

token can be used for text classification tasks. [46] Additionally, a segment embedding is added

to every token to state the belonging of that token to a sentence. Other special tokens include the

[UNK] token, which indicates that BERT is unable to tokenize a word due to character illiteracy

problems and the [PAD] token used for padding when the lengths of token embeddings in a batch

are not uniform. Lastly BERT uses a sub-word representation for unseen words whereby words

get split into smaller sub-words or characters. To mark a partial representation of a word two ##

are used. An example is displayed in figure 2.4 by the tokens ”play” and ”##ing”. Only words that

are not part of the maximum of 30,000 word vocabulary of BERT are represented as sub-words.

Figure 2.4: Representation of words embedded by BERT [3]

At the time point of publishing BERT achieved several state-of-the-art performance tasks, includ-

ing GLUE (General Language Understanding Evaluation), SQuAD (Stanford Question Answering

Dataset) v1.1 and v2.0 and SWAG (Situations With Adversarial Generations). [3]

2.6 Data Balancing Techniques

Datasets that emanate from real world scenarios tend to be imbalanced. This is especially true

for medical dataset that label their examples for certain illnesses. Most of the time medical data

collections have a high imbalance towards healthy individuals. Trying to predict the minority in

such datasets is reasonably difficult since every model will have a strong bias towards the negative

class. To remedy the imbalance, two approaches are possible - algorithmic and data-based. While

algorithmic approaches mostly try to manipulate the loss of the model towards the minority class,

the data-based approaches use techniques over-, under- and combined sampling. Since our dataset

also has a strong imbalance towards success, managing this imbalance was inevitable.

2.6.1 Focal Loss

The focal loss is an imbalance-managing adaptive loss function based on the cross entropy loss.

As the certainty of predicting a class rises, the scaling factor can decrease to zero. This leads to a

lower learning contribution of the network for those classes. Through that the focal loss allows for
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scaling up the focus on difficult-to-predict classes, thus making it a suitable choice for handling

imbalanced datasets. The focal loss is defined as:

FL(pt) = −(1 − pt)γlog(pt)

γ is the additional factor that differentiates it form the cross entropy loss. According to the original

paper γ > 0 increases the loss for difficult-to-classify classes while reducing it for simple ones. We

included this method because, in its original paper, it shows promising results. [47]

2.6.2 Class Weighting

Class weighting is another approach to balancing the learning of classes through manipulating the

loss based on class rarity. It is also based on the cross entropy function, however, its formula is

different from the focal loss.

WCE = −(βylog(ŷ) + (1 − y)log(1 − ŷ))

Generally, the idea of the focal loss and the weighted class entropy (WCE) loss is the same - learn

difficult classes by penalizing frequent classes. The weighting factor β can either be scalar or a

vector, depending on the count of classes to predict. By utilizing the factor as > 1, false positives

get favored, whereas setting it to < 1 favors false negatives. This technique was included in our

research since it is easy to implement and has already seen its use in the medical sector. [48]

2.6.3 Weighted Random Sampling

When randomly selecting items from a data collection where each item has the same chance to

be selected this is called uniform sampling. However, there are instances where groups or spe-

cific items should be selected more or less frequently when sampling. To achieve this behaviour,

weights can be assigned to each data point, thus making a selection more or less likely. This pro-

cedure is called weighted random sampling. Using this technique, the bias in imbalanced datasets

can be reduced by assigning a higher probability of selection to the minority classes and, in do-

ing so, increasing the likelihood of learning those classes in their entirety. This technique was

implemented in our research to have a statistical mean of balancing a dataset. [49]

2.6.4 SMOTE (Synthetic Minority Over-Sampling Technique)

While the previously mentioned techniques were based on loss or statistical means, SMOTE is a

technique that can be used to generate samples for a dataset and therefore balance it out. Work

prior to SMOTE has shown that oversampling by replacement does not increase prediction of

the minority class, since the decision region of the classifier gets smaller. Therefore, SMOTE

oversamples the dataset by creating synthetic examples, which it does by combining data from its
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k nearest neighbors of the rare class. More specifically, the SMOTE algorithm works by taking the

k nearest neighbors, creating a sample in course of those. Then the difference between the newly

created sample point and its neighbors is taken, followed by a multiplication of the difference with

a random value from 0 to 1. The difference then needs to be added to the synthetic feature vector.

Through this approach, a new example is created between two already existing examples, causing

the oversampling to be more general and the decision region extensive. [50] Further research on

this method came up with variances of SMOTE.

SMOTE BL In a classification dataset most of the examples (if the dataset is of good quality)

can be clustered into a region. The outer rim of this region is called the borderline. Examples

located on and close to the borderline are difficult to classify since they diverge strongly from

the core. SMOTE BL (BorderLine) focuses on creating synthetic examples only with borderline

data points. Experiments conducted by Han et .al show that SMOTE BL outperforms the original

SMOTE. [51]

SVM SMOTE Support Vector Machines (SVM) are a common tool used in the machine learning

realm, however the SVM algorithm suffers significantly from imbalanced datasets. To alleviate

this weakness, Akbani et al. [52] implemented a SMOTE flavor that uses the different error costs

algorithm by Veropoulos et al. [53] The implementation accomplishes the following idea: The dif-

ferent error costs function pushes examples of the minority class further away from the borderline

so that examples can be more easily classified and SMOTE takes the densely distributed examples

to better define the borderline.

SMOTE ENN Edited Nearest Neighbor (ENN) is a technique which eliminates classes that are a

minority in their neighborhood. It removes examples that have a different label from at least two

of their three nearest neighbors, thereby making the decision region more homogeneous and easier

to differentiate from other classes. ENN gets used prior to SMOTE. [54, 55]

SMOTE Tomek The Tomek algorithem, as ENN, is a technique used prior to SMOTE to clean

singular data points from the dataset. To achieve this, Tomek uses two examples of different

classes (a and b) and estimates the distances (d) between them and one other randomly selected

sample (z). If the criteria d(x, y) < d(y, z) or d(x, y) < d(x, z) are met, a Tomek-Link gets

established and both of the examples are removed. [56]

2.6.5 ADASYN (Adaptive Synthetic Sampling)

As a basic idea, ADASYN uses a weighted distribution individually for every minority class ex-

ample, depending on their complexity when it comes to predicting the example. For examples

that tend to be difficult to predict, ADASYN generates more synthetic data to reduce the bias on

subsets of the minority classes that are very well represented. [57]
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2.7 Summary

In this chapter, we covered all the necessary fundamentals for understanding this thesis. We first

took a look at relevant metrics for evaluation classification algorithms and examined them from

the most simple, like the confusion matrix, to the complex, like the F1-Score. We then conducted

a deep dive into the different models used and investigated the Random Forest, MLP and Trans-

former models. Lastly, a description of data balancing approaches we covert.



3 Dataset Description

This chapter covers the data sources and the data itself. The first section will refer to the to the

Charité provided database and explain which tables and entries have been used in this work. The

following section describes and reasons the process of sectioning the cohort for this project. Lastly,

an analysis of two datasets has been conducted, the dataset derived from T-Base, on which this

thesis is based, and the Mimic-III dataset, which was given to us as a temporary task.

3.1 T-Base

The T-Base database was provided by the Charité of Berlin to explore the possibility of predicting

kidney graft loss after a transplantation in long- and short-term scenarios. The database explicitly

holds data of patients who underwent a transplantation of any sort. Not only does the database

keep track of the recipient of the transplant but also the donor, as information about the donor

is also valuable to guarantee a successful transplantation. In detail, the database hosts personal

information about the receiver and donor, like height or age. Furthermore, the medication a patient

receives, the diagnoses made by physicians, laboratory blood and urine values, information about

the transplant procedure and much more. Figure 3.1 shows the database in its entirety.

Tabular Data The tabular data that has been used for the prediction task comes from the tables

Transplantation, Patient, Donor, Laborwert, Medication, Diagnose, Verlauf and Dialyse. All data

extracted from these tables was either numerical or categorical.

Text Data The text extracted from T-Base can be located in two tables, Untersuchung and Verlauf.

Textually, the Verlauf corpus holds information about doctors’ assessments. It consists mostly

of observations a doctor made and is apportioned into three columns of the table, Beurteilung,

BeurteilungAerztlich and BeurteilungIntern. Untersuchung, on the other hand, only has one col-

umn of text, however the text comes in multiple categories and is vastly different for each of those.

Its contents can be highly structured, like a machine-written laboratory report mostly consisting of

tables, but also highly unstructured in the form of continuous text originating from a physician’s

survey.

17
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Figure 3.1: T-Base database structure. This figure shows the entire database. To simplify it the
headers of tables used as features for the tabular model are colored blue, while tables used for the
text model are colored green. Individual columns used are colored orange.
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3.2 Cohort Selection

The decision on which patients should be part of the cohort was made by medical staff. The rules

created to form the cohort were made with medical and practical intentions. At the time when

this project was conducted, the total number of kidney patients found in T-Base was 19642. We

applied the following selection rules to them:

• Only patients with one or more kidney transplants, but no other kind of organ transplant.

• Discard all patients younger than 18

• Transplants before the year 2000 were not included

• The transplant must have been conducted at the location of Charité Mitte or Virchow

• Patients who had a failing transplant within 12 months after transplantation were not con-

sidered

Applying those rules 1263 patients were a fit, which resulted in 1265 possible transplants to pre-

dict. Patients under 18 were excluded, since aftercare for them is provided by the pediatrics

department. The choice of not including transplants before 2000 is the result of incompatible text

data. Patients having a failing kidney within 12 months after the surgery were excluded since the

definition we chose for labeling the data would label them incorrectly.

3.3 Data Labeling and Feature Selection

A classification task needs labels or classes. For our task we decided to set the label as short-term

failure when the patient died or the kidney was lost between 12-18 months after the surgery. The

first 12 months after transplantation were not considered as graft loss does not commonly occur

during this time. Illustration 3.2 shows all time periods of the transplantation process.

Figure 3.2: Label selection time frame. The illustration shows the time frames that are important
to select the label for a patient. The decision of which label to allocate is made in the time period
12-18 months after the surgery.

Furthermore, a stratified train-test-split was conducted with a ratio of 70/30. Splitting the dataset

resulted in a training set of 886 and a test set of 379 transplants whose class balance can be

observed in figure 3.3.
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Figure 3.3: Class distribution plot. Shows the class distribution in percent after the train-test-split.
It can be clearly seen that the dataset is highly biased towards success.

Feature Selection For the feature selection of the tabular data, we carried on with the selection

period provided by the predecessor thesis. [26] In this work, tabular features were selected from

the day of the surgery up until 12 months past it. The selection of text, however, starts at the

first entry of a given patient until 12 months after the transplant. We considered data prior to the

transplant to be valuable to the prediction, thus we included it.

3.4 A Temporary Task - Mimic-III Dataset Analysis

At the beginning of this thesis the access to the T-Base database had been delayed. As it was not

clear when the access would be granted an alternative task was proposed. Instead of predicting

AKI failure through the T-Base data collection, the prediction task of readmission to the ICU

(intensive care unit) within 30, 15 and 7 days of discharge utilizing the Mimic-III dataset [58] was

investigated. This task has already received significant dedication by the scientific community.

[59–63]

The planned contribution was to implement text embeddings provided by a BERT model. Unfor-

tunately, the temporary assigned task never led to a full implementation of a model, but a deep

dive into the Mimic-III dataset had been conducted.

Overall the dataset holds 33,204 total patients and an absolute count of 44,026 ICU admissions.

The average number of ICU visits per patient is 1.33, while the mean length of a stay is calculated

to be 63.66 days. In total, 762,417 notes are contained in the dataset, per patient, 23 notes being the

average per patient and 17.31 the average per visit. The Mimic-III data also includes 1947 unique

ICU-9 codes for procedures and 210,376 in total, further it hosts 6,184 unique ICU-9 codes for

diseases and a total of 521,786 codes can be found. Another important part of an EHR (Electronic

Health Record) is the history of medication. Mimic collects this type of information as National
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Drug Codes (NDC). There are 3725 unique NDCs found and in total 1,885,865 medications have

been administered.

To be able to predict a readmission, a patient needs to be readmitted, meaning a patient needs to

have at least two visits to the ICU to be a valid choice for the cohort. Another condition for an

example to become part of the cohort is that the readmission has to take place in a time frame less

than 30 days. The distribution of visits per patient, seen in figure 3.4, shows that most patients

only experience one visit to the ICU during their illness. However the dataset still holds more than

1,000 patients with two visits and several patients with multiple visits.

Figure 3.4: Number of visits per patient (Mimic-III).

Figure 3.5 shows the distribution of patients by readmission within 30, 15 and 7 days on the left.

It can be seen that patients are much more likely to be readmitted within 7 days than during the

longer time periods. Since the longer time periods also include the 7 days readmission, it might

look like patients are more like to be readmitted within 30 days. However, every 5th patient has

been readmitted within the time frame of 30 days which, in terms of class balance, definitely means

that prediction of readmission is possible. The same pattern can be observed when readmission is

displayed by visits, shown by the right graph of Figure 3.5.

The figure 3.6 shows on the left the average time spent during an admission (LOS) in hours by the

count of visits and, on the right, the average time between visits by visit count. In the first diagram

a volatility can be noticed when looking at the majority distribution of the stay length. A major

outlier can be spotted with a count of two visits and an average stay length of over 4000 days.

On the right diagram, a downtrend is visible from a stay count of 1 to 9, after which the length

between the stays turns volatile again. A downtrend would have been expected, because the more

serious an illness is, the more likely you are to be readmitted in general and in a short time frame.

To assess if the time spans, shown in figure 3.6, hold any impact towards the classes, a linear

regression has been performed. For the length of a stay it can be concluded that it has a positive

impact for all three classes (30, 15 and 7 days). The longer their stay, the more likely a patient

is to be readmitted (see figure 3.7) which is expected because a shorter stay would indicate a less

severe condition. The length of time between ICU stays is not significant, except in the 30 days

class. There is no correlation between the outpatient time and a readmission.



Chapter 3. Dataset Description 22

Figure 3.5: Count of patients or visit per readmission (Mimic-III).

Figure 3.6: Average time spent in ICU and time between ICU admissions (Mimic-III).
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Figure 3.7: Linear-Regression Stay length and readmission (Mimic-III).

Furthermore, an investigation on the relationship between readmission and insurance type, as well

as number of transfers, has been carried out. The investigation was conducted to find evidence

for the differentiability of the classes. Figure 3.8 shows the relationship between transfers and

readmissions. The x-axis represents the number of transfers a patient has gone through, while the

y-axis displays the number of readmissions. Observing the graph shows that a higher transfer rate

fosters a lower readmission rate. However, transfer numbers smaller than nine are abetting higher

numbers of readmission.

Figure 3.8: Distribution of Readmission rate by Number of Transfers (Mimic-III).

The correlation between the type of insurance and the number of readmissions can be seen in

figure 3.9. The bar diagram displays the type of insurance on the horizontal axis, while the count

of readmission is displayed on the vertical axis. The classes are differentiated by three different

colored bars. Being insured with Medicare gives the patient an up to three times as high chance

of being readmitted to the ICU within 30 days than being privately insured which gives a patient

the second highest chance. This trend keeps up for every insurance type found in the Mimic-

III. Governmental and no insurance (Self Pay) patients have the tendency to get readmitted fewer

than ~1 times. The prediction between admission and no admission can be more efficient when

implementing the insurance type as a feature since insurances like Medicare and Private hold a

much higher chance for readmission than a governmental or no insurance.

Figure 3.10 shows the top 11 diseases found in the dataset in percent. It is apparent that the
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Figure 3.9: Distribution of Readmission rate by insurance type (Mimic-III).

most common diseases distribute equally between the three classes, excluding Disorders of lipoid

metabolism and Systemic inflammatory response syndrome, which are only found in one or two

of the three classes. Since the classes are equally distributed, it might be difficult to distinguish

between them through this feature.

Figure 3.10: Distribution of top diseases found by readmission period (Mimic-III).

To see which impact the disease, procedure and medical codes have, a linear regression was con-

ducted between them and the readmission count which can be seen in figure 3.11. The p-value for

the correlation between a readmission and the number of diagnoses lies at 0.003, which makes the

correlation, with a confidence interval of 5%, statistically significant. A negative impact can be no-

ticed after the 25th diagnosis, however a count of up to 10 diagnoses benefits further readmissions.

A proportional rise of the number of admissions and the number of diagnoses should be expected
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since more diseases could also increase the risk of a severe illness. However, this is only the case

until a count of 10 diagnoses. After the 11th diagnosis the number of diagnoses falls to ~250, does

a dead cat bounce and descends to ~1. For the middle graph displayed in figure 3.11, the p-value

is estimated to be 6.02e-12. The graph shows the correlation between the number of performed

procedures and the rate of readmissions. A declining trend of admissions by rising procedures can

be observed. An explanation for this trend might be that patients who receive more treatments

than necessary are actually contributing to their health. The last graph situated on the right shows

the relation between the rate of medicine administered and the readmission count. Calculating the

p-values resulted in a statistically significant value of 1.68e. A negative impact can be noticed

upon taking around 50 medications which leads to a steep decline in readmissions.

Figure 3.11: Linear regression of disease, procedure and medical codes (Mimic-III).

In conclusion, the investigation shows that the dataset can indeed be used to predict readmis-

sion. This result is also backed by the fact that positive results have already been achieved by

the scientific community. [59–63] The dataset provides sufficient amounts of data with a total of

44,026 readmissions. Even though the class balance is 1 to 4 for the largest class, a plausible

discriminability thought features is given

3.5 Summary

This chapter dealt with the data used in this project. It first covered the structure of the database

T-Base and exposed all features used for each of the two data types (figure 3.1). Then the bias

towards failure of the dataset was shown and explained followed by the feature selection and the

labeling. The chapter closed out with a section regarding the Mimic-III dataset. A small analysis

of the dataset was conducted.



4 Methodology

In this chapter we cover all the approaches done to prove our hypothesis. To begin with, we will

first cover out hypothesis and then state the problem definition. Next we will give an introduction

to our chosen baseline and the tabular data preparation measures. This is followed up by the tabular

model architecture, the text data preparation and the implementation of the text model. Lastly, the

measures taken to create the ensemble model will be laid out.

4.1 Random Forest Baseline

Most machine learning tasks have a predecessor that already did work on that particular task and

delivered results. To compare our work and see if we were able to improve upon the past product,

we use the best model by Haldar et al. [26] In the prior work, a variety of models have been

evaluated which are Random Forest (RF), Multilayer Perceptron (MLP) and LSTM mono- and

bidirectional. The architecture that beat all others was determined to be the RF.

4.1.1 Data Selection

The baseline only considers categorical and numerical data as an input for the prediction. However,

the full feature vector was 229 features long. Haldar chose all features in correspondence with

medical staff and refined the selection after conducting error analysis. The following tables show

the final selection.

Table 4.1 shows a collection of patient detail and their selection for the receiver and donor. Some

of the features might be self-explanatory, while others are not. So only features that might not

explain themselves to the reader are described in the following section. The Primary Function

states if the kidney transplanted was already working during the surgery. The side at which the

kidney was taken from or transplanted to is described by "Side of Kidney", this is important since

the radius, and thus the perfusion, of the arteries differ from left to right kidney. Medication might

not be unknown, but it is worth noting that it is not a single feature but can be itemized into all

medicines available. However, listing all of them would be excessive. The abbreviations found in

the middle and last third of the table are antibody occurrences. Lastly, the donor type refers to the

state of aliveness of the donor when receiving the kidney.

The features got selected from the Patient and Donor tables, as well as the Transplantation Table.

26
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Details Receiver Donor

Sex X X
Body Height X X
Age X X
Body Weight X X
Blood type X X
Primary Function X X
Side of Kidney X X
Medication X X
Blood pressure X X
Hearth rate X X
CMV AK pos X X
CMV IGG pos X X
HBC AK pos X X
HBC AB pos X X
HCV AB pos X X
HCV AK pos X X
HBS AG pos X X
Dialysis type X X
Donor type X X
Degree of Kinship X X
Time ∆ first Dialysis and Transp. X X

Table 4.1: Selected features for receiver and donor; The table gives an overview of the features
selected for receiver and donor. A Xstates that the feature has been selected for that participant,
while an X determines that this feature is absent.
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Further a features for diagnosis and primary disease were selected, both as categorical values

consisting of 30 and 26 categories.

Lab values Kidney

Creatinin Ischämie kalt
CPR BANFF
Leukozyten - Blood PRA
Leukozyten - Urine MM Board
Protein Concentration
Protein Dipstick
ProteinTUR
Daily Protein output
NitritTUR

Table 4.2: Selected features for Lab values and the kidney; The table gives an overview of the
features selected for Lab values and the kidney.

The Lab values seen in table 4.2 are mostly different methods of measuring protein. All the values

were collected from the day of transplantation until one year after. The values were originally a

time series, however, for the RF model, mean values with different time spans have been calculated

like overall, after 1, 2 or 3 months, to create a uniform input vector length. All values in this

column are numerical.

Values concerning the kidney can be seen in the second column. The BANFF is a scalar that shows

the quality of the kidney, thus is a categorical value. [64] MM Board states how well the receiver

and donor match in terms of kidney transplantation.

4.1.2 Data Preparation

To transform the data into a format useful for ML, several measures have been taken by Haldar

et al. Categorical features are usually given in a string format, however ML models can only

process numbers. To convert them to coherent numbers that still represent the original categories,

several techniques are available. [65] Haldar chose one-hot-encoding for transforming the values.

Furthermore, a normalization was implemented to set values with high ranges, like age, between

zero and one. This keeps certain model architectures (Deep learning, logistic regression, etc.)

from weighting values with high numbers more strongly. [26] Following up the normalization is

an imputation, which fills in missing values based on values that are present in the example of a

patient. [66] The last step in the data preparation comes with the oversampling technique SMOTE

to balance out the dataset. The balance was restored to 50/50. Figure 4.1 shows the full workflow

of the data preparation.

4.2 Tabular Model

Despite the fact that Haldar already implemented a MLP model for the tabular data, we were under

the perception that the Principal Component Analysis (PCA) [67] he applied before passing the
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Figure 4.1: Tabular data preparation workflow. The figure shows the sequence in which the data
transformations are applied to the data. It is important to note the order in which the transforma-
tions are performed.

vector to the MLP model would impair the results of the model.We came to this conclusion since

a decremental architecture would give the model an opportunity to condense that vector itself and

not lose data before inputting it. The architecture of the final model can be seen in figure 4.2.

Furthermore, we decided to apply additional balancing techniques to the data. The data however

runs through the same process described in section 4.1.2 We did not apply any changes to it other

than leaving out the PCA, which was anyways only applied to the MLP and not the RF model by

Haldar [26]. In total, 12 experiments were conducted.

4.2.1 Tabular Model Experimental Setup

As the dataset used was highly imbalanced, a suitable technique to handle this imbalance was

needed. To find this technique we ran a multitude of experiments. We included mostly balancing

methods that do not use oversampling as their core idea since oversampling was already used in

the baseline. Furthermore, we differentiated between a homogeneous and decremental layer archi-

tecture. The decremental architecture was evaluated to make the previously used PCA redundant.

Choosing Hyperparameters Since time constraints were a limiting factor in this work, we de-

cided to run all experiments with the same hyperparameters. We based our choice on prior expe-

rience and the review of papers. [68] Our input layer was determined to be 229, as this was the

feature length resulting from the previous work. While our output layer consists of one neuron, the

hidden layers were interchangeably a linear layer followed by a batch norm layer. Final selection

of hyperparameters can be seen in the following list.

• Epochs: 100

• Batch Size: 64

• Learning Rate: 1e-4

• Hidden Layer Size: 32

• Layers: 3

• Decemental: True & False

Balancing Techniques. Included in the experiments were six methods. As a minimal attempt

we used the model architecture without modifying the data or loss function. Furthermore, we

investigated balancing methods that respected the ratio of the classes like class weighting [69],

weighted random sampler [49] and focal loss [70], as well as a combination of class weighting

and weighted random sampler. Lastly, the baseline technique of SMOTE was examined [50].
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4.2.2 Tabular MLP Model

Evaluating the previously conducted experiments, we concluded that weighted random sampler

and a decremental model architecture would deliver the best results, as well as a model which uses

no balancing technique.

Model Architecture. The full architecture can be seen in figure 4.2. As a result of the previously

conducted work by Haldar [26] the input layer was determined to be 229. Since the size of the

feature vector was high in comparison with the number of examples in our dataset, we decided to

use a decremental architecture to avoid the curse of dimensionality. Furthermore, the smaller the

last layer of the hidden unit is, more like an evasion of the curse of dimensionality on the ensemble

model. The hidden layers start with a size of 256 and end with a size of, followed by an output

layer of 1 for the binary prediction. Moreover, we chose alternating layers of linear and batch

norm. Batch norm layers were used to quicken the training and to smooth the learning. [71] We

used binary cross entropy loss as our loss function.

Figure 4.2: Tabular model architecture. Linear layers are displayed as blue, while green neurons
are batch norm layers. Important to note is the decremental structure of the model.

Hyperparameter selection. To find fitting hyperparameters we conducted a hyperparameter

search. The ranges and parameters used for the grid search are displayed in table 4.3. We used

a wide range of values which made the grid search take four days. The last column of the table

shows the selected hyperparameters, while the second, third and fourth columns show the mini-

mum, maximum and the steps the optimizer can take.

4.3 Text Model

This section will cover the setup of all experiments related to the text model investigation. Several

experiments were conducted to find the best-suited BERT model for the text corpus. This includes
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Hyperparameter Grid Search Minimum Grid Search Maximum Grid Search Steps Final Hyperparameters

Epochs 50 1000 10 650
Batch Size 8 192 8 96
Learning Rate 1e-8 1e-4 1e-1 1e-5
Layers 2 5 1 5
Hidden Dimension 16 512 8 256
Decremental - - - True
Class Weights - - - 0.0102, 0.5525

Table 4.3: Hyperparameter Optimization and resulting hyperparameters. The table shows from
left to right first the selected ranges and steps for the grid search and in the last two columns the
hyperparameter resulting from the grid search for the tabular model.

multiple BERT models, text sampling techniques and data balancing treatments. Upon finding the

best fitting combination an MLP model has been trained to predict short term AKIs. Additionally,

the steps taken to train and evaluate the models are mentioned. This section will also cover the

measures to prepare the text are presented.

4.3.1 Text Preparation Measures

Clinical notes are usually written by a doctor and feature his/her impressions and observations

of the patient’s health condition. Most of the time, text for a single patient even comes from

a multitude of medical personnel. Knowing this, the expected text will be unstructured and with

high variance. This leads to a high amount of noise in the data. Even if a doctor decides to structure

their text well, other doctors might not follow their patterns.They might have their own ways of

structuring the notes or just write continuous text, meaning that a foundation for uniformly well-

structured medical text is not given. Furthermore, the medical domain features a vast amount of

medical abbreviations, some of which are ambiguous and fall out of context for a NLP model if not

properly trained. Text featured in an EHR might also be structured when created by an algorithm

or a UI used by the user. Those reports usually originate from laboratory results. Generally, text

data mostly contains unwanted or nonsensical symbols, like HTML tags, that need to be addressed.

Thus, prepossessing the text is necessary.

This work features two iterations of text preprocessing variances. A general flow of the processing

pipeline can be seen in figure 4.3. The first iteration has a minimalist approach to preprocess the

text and is used for most of the experiments and results in this thesis. Iteration two, on the other

hand, has been created after the first error analysis and is therefore much more refined. If iteration

two is used for one of the tasks, it will be explicitly stated.

We were provided two sources of text from the Untersuchung table and the Verlauf table. As for

the Verlauf table, we concatenated the texts of the columns Beurteilung, BeurteilungAerztlich and

BeurteilungIntern. For the most part, the three parts follow repeating patterns and are comparably

short. Untersuchung, on the other hand, features long and unstructured text but is clustered into

multiple categories..

Category driven measures. The provided Untersuchung text was clustered in 105 categories.

Having the text labeled by category was helpful to determine characteristics and structures of cer-
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Figure 4.3: Generalized Text Pipeline. The figure shows a generalization of data processing for
text. At the lower third of the figure the text cleaning steps can be seen for iteration one and
two. The text cleaning steps are the same in number, but the first three steps of iteration one are
contained in the first step of iteration two.

tain texts.We used this convenience to apply measures selectively to certain categories. Texts of

the category Mikrobiologie were found to always store their relevant information in between the

words "Material:" and "medizinisch validiert", so we were able to extract this part via a regular

expression seen in table 4.4. For the second iteration we applied additional category-driven mea-

sures, like removing reappearing street names and the JNr for pathology reports. In the Verlauf

category we threw out empty parts that would usually state which doctor the patient had been

treated by. The text of the KOD category had TNM classification codes, which are codes to de-

termine the state of a tumor. [72] We translated those codes to readable text describing the state

of the tumor. Furthermore, we used the category as a headline for each text to give the text model

more context about it and reduced the variance of categories by aggregation. The categories were

aggregated as some of them were duplicates like "Sono" and "Sonographie". For both iterations

we used quantile values by category to trim outliers. This measure was taken since some of the

texts appeared to be repeating themselves multiple times in one entire.

On Handling Medical Abbreviations. Text of both the tables Untersuchung and Verlauf are stud-

ded with abbreviations that refer to medical vocabulary. Using abbreviations with a text model that

has not been fine-tuned to understand them might lead to a loss of information, especially when the

abbreviations are ambiguous. [73] To handle these abbreviations, we decided to create a dictionary

containing the abbreviation and its corresponding full phrases. Wikipedia offers a German article

for medical abbreviations ordered in a table structure. We captured this data via web request.1

This gave us 2822 translations of which about 300 were ambiguous. For the ambiguous abbre-

viations, we let a medical doctor who has insight into the data decide which of the translations

to keep. This condensed the vocabulary to 2514. Some abbreviations could be written out using

either a colloquial or a professional term. Whenever possible, we decided to go with the colloquial

term, since our BERT model is neither pretraind nor fine-tuned on medical text. Examples include

the abbreviation "RR", which translates to "Riva-Rocci" and means blood pressure. To locate and

1https://de.wikipedia.org/wiki/Medizinische_Abk%C3%BCrzungen

https://de.wikipedia.org/wiki/Medizinische_Abk%C3%BCrzungen
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replace the abbreviations, we used a regular expression. Conversion of the abbreviations was only

done on the second iteration of text.

Replacing Unknown Characters. Whenever BERT encounters a character it cannot encode, it is

going to replace the whole word in which the character is found with the [UNK] token. Losing

whole phrases because of a single character not found means losing information, while not being

able to encode Greek or Scandinavian letters like µ or ∅, which themselves hold information,

also results in information loss. To prevent this loss of information, we decided to apply different

methods for replacing or removing unknown characters depending on the case.

We found that some combinations of characters that were unknown to BERT would always be

equivalent to the same letters. For example, if an "Ä" followed by a "2" was observed, the "2"

would need to be replaced with an "r" for the word to be readable. We were able to track down 10

of those instances. Furthermore, we replaced accented letters, like é, with their unaccented coun-

terparts and spelled in full symbols like ∅. Some characters that were absolutely not classifiable

were completely removed.

Using Regular Expression to remove unwanted Text Chunks. The text found in the database

came with repetitive and impractical information for the prediction target. To remove the unwanted

information, we implemented regular expressions. Table 4.4 shows the regular expressions used

and provides information about which iterations they are used in. Common information found in

text we deemed as not important to the prediction are HTML tags, URLs, telephone numbers and

street names. Further clinical specific findings we removed in agreement with medical staff were

the admission number, the date at which a "Befund" was received, the laboratory number, the case

number and the J-Nr. We also removed zip codes followed by a city name with a list of 9178 city

names. Lastly, we found some instances of text where a "\" followed by an "X" and a combination

of numbers were present. We removed those as well.

Description Regex Iteration 1 Iteration 2

URL (http|ftp|https)://([\w_-]+(?:(?:\.[\w_-]+)+))([\w.,@?^=%&:/~+-]*[@?^=%&/~#+-])? X X
URL V2 (?:(?:ftp|http|https)?(?:://)?(?:[Ww]{3,3}\.|)[A-Za-z0-9-+]+\.[A-Za-z]{2,5}(?:/[A-Za-z0-9?+-_=&.~#]|/|)) X X
X0009 \\X(.*?)\\ X X
Street names ((?:|Am )([a-zA-Zäüö-]{1,}(?: |)(?:street_name_suffixes)(|)([1-90]{1,3}(?:|)[a-zA-Z]|[1-90]{1,3}),*)) X X
Zip code and City (\b[1-90]{5,5} (?:name_of_city)\b) X X
HTML-Tags <.*?> X X
Telefon number (\(?:\b(?:tele_prefixes)(?:| |: )(?:[0-9]{0,3}(?:-| |/|/ ))(?:(?:-| |/|/ )[0-9]+)+\)?) X X
All Caps and Split Words \b(?:[A-Z]{1,1}(?:|:|\.)){2,} X X
General Split Words \b(?:[A-Za-z]{1,1}(?:\s|:|\.)){2,} X X
Abbreviations (?:(?:\b(|/|\s) + Abbreviation + [.,;:!?\s]) X X
Admission number ((?:Alte Aufnahmenummer:|Aufnahmenummer:)\s[1-90]{3,13}) X X
the word bold ( bold(?: |)) X X
Befundsempfänger (Befundempfänger: Berlin, den [0-9]{0,2}\.[0-9]{0,2}\.[0-9]{0,4}) X X
Laboratory Nr. (Labor./Auftrags-Nr.: [0-9]*) X X
Case number (Fall-Nr.: [0-9]*) X X
Empty seen through (?:gesehen durch:(?: |)Therapie) X X
Empty therapy through (?:Therapie durch\:$) X X
J-Nr. (J-Nr\.:)((\s[A-Z]{0,1}[0-9]*(-| )[0-9]{0,2})|([A-Z]{0,1}[0-9]*(-| )[0-9]{0,2})) X X
TNM-Codes (?:(?:(?:p|c|y){0,3}T(?:[0-4]|is)|(?:(?:p|c|y){0,3}N(?:[0-4X])))1,2(?:[A-Za-z0-9(+)\/])(?:\b|)) X X
Microbiology cutout (?:\sMaterial:.medizinisch validiert) X X

Variable names can be found in the appendix (street_name_suffixes, tele_prefixes, name_of_city). They have been neglected to keep the table lucid.

Table 4.4: Regular Expression; The table shows all considered regular expressions in the middle
column and their use in the first column. Important to note are the last two columns that state
which iteration of text cleaning what regular expressions are used in.

Empty and Short Texts. Entries in the text were sometimes empty or featured fewer than 5 words.

As those entries would not deliver any or very little information, we, in correspondence with the
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medical staff, decided to replace those with the phrase "Patient lebt.". The decision was made on

the premise that entries that short do not feature any problematic occurrences in the patient and

thus were only made to state the visit and well-being of the patient. This effort was made for both

iteration one and two.

Text Aggregating and Selection. At last we decided to aggregate the text by day. Texts are al-

ready organized by day and transplantation ID, however, if two or more texts appear on the same

date for one transplantation ID, we concatenated them. Furthermore, to aggregate one corpus for

a prediction, we selected all text prior to the transplant date and all texts up until one year after the

transplant.

4.3.2 BERT Models - Overview

This section gives an overview of the selected BERT model for the evaluation. Three BERT

models were open for selection. The models are partially pretrained on different datasets and

partially fine-tuned on different tasks. We included a selection to investigate which combination

of pretraining and fine-tuning would provide the best results on our text corpus.

Base-BERT-German

The Base-BERT-German-Cased model [5]2 has been published in 2019.It was trained on three dif-

ferent text corpora, including 6GB of German Wikipedia, the OpenLegalData3 dump contributing

2.4 GB and news articles with 3.6 GB. The training was realised within 810.000 steps, a batch

size of 1024 and a sequence length of 128, as well as 30.000 steps with sequence length 512. The

model was evaluated on five German NLP tasks using the F1-Score as a metric and comparing it

to multilingual models as shown in table 4.5.

Model GermEval18 (coarse) GermEval18 (Fine) GermEval14 CONLL03 10kGNAD

multilingual cased 0.710 0.441 0.0834 0.792 0.888
multilingual uncased 0.731 0.461 0.823 0.786 0.901
German Bert cased 0.747 0.488 0.840 0.804 0.905

Table 4.5: Base-BERT-German Evaluation of Deepset. [5] The table shows a comparison of
Deepsets German Base-BERT-cased with multilingual models and five tasks. Important to note is
that the BERT model outperforms. The score compared is the F1-Score.

The first two tasks mentioned in table 4.5 are classification tasks (multi- and binary classification),

the second and third one are NER tasks and the last one is a document classification task. As

the table shows, it was possible for the Base-Bert-German model to outperform the multilingual

models.

Since the medical notes found in TBase are written in the German language, Base-Bert-German

has been considered a suitable choice for the kidney prediction task.

2https://deepset.ai/german-bert
3http://openlegaldata.io/research/2019/02/19/court-decision-dataset.html

https://deepset.ai/german-bert
 http://openlegaldata.io/research/2019/02/19/court-decision-dataset.html
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gBERT-Base

Released by Deepset in the last quarter of 2020, the gBERT model was trained on significantly

more data then the Base-Bert-German model. [6] A German version of the OSCAR dataset [74]

was used, which was obtained by a comman crawl, sorted by language and preprocessed, leading

to 145GB of German text. Further, a Wiki dump was collected using the WikiExtractor repository4

resulting in 6GB. Moreover, the ORUS dataset5 consisting of subtitle text was added to the corpus

and contributed 10GB, [75] as well as the already mentioned Open legal data dump with 2.4 GB.

The overall size of the dataset adds up to 163.4 GB of German text.

The training was conducted with a sequence size of 512, a batch size of 128 and a maximum of

4000 training steps.

GermEval18 (Coarse) GermEval18 (Fine) GermEval14 Averaged F1

GBERTData 74.51 48.01 87.41 69.97
GBERTWWM 76.48 49.99 87.80 71.42
GBERTData+WWM 78.17 50.90 87.98 72.35

Data: Full dataset without Whole Word Masking
WWM : OPUS and Wiki dump data without Whole Word Masking
Data+WWM : Full dataset with Whole Word Masking

Table 4.6: gBert Evaluation of Deepset. [6] The table shows Deepset next generation language
model in comparison on different training data and tasks. It is worth noting that it outperforms the
BERT model of table 4.5 in all overlapping tasks. The evaluation metric is the F1-Score

The scores seen in table 4.6 are macro average F1-Scores. Comparing table 4.6 and table 4.5 on

the overlapping tasks, gBERT outperforms Base-BERT-German by 2-4% points on all tasks. So,

we also deemed this model to be a fit for the given task.

German MedBert

During research, a German MedBERT model had been found. [7]6 The model is based on the

Base-BERT-German model and has been fine-tuned on medical text with the task of document

multilabel classification for ICD-10 codes.

Models Precision Recall F1

German BERT 86.04 75.82 80.60
German MedBERT-256 87.41 77.97 82.42
German MedBERT-512 87.75 78.26 82.73

Table 4.7: MedBert Evaluation. [7] While not fully comparable with the Base-BERT and gBERT
model, due the different datasets and tasks, the model still shows decent results.

Table 4.7 shows that the model performed decently on its task and was able to outperform the

German Base-BERT model. Even though this model is based on German Base-BERT, we decided

to include it in the experiments since it was fine-tuned on predicting diseases.

4https://github.com/attardi/wikiextractor
5http://opus.nlpl.eu
6https://huggingface.co/smanjil/German-MedBERT

https://github.com/attardi/wikiextractor
http://opus.nlpl.eu
https://huggingface.co/smanjil/German-MedBERT
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4.3.3 BERT Model Experimental Setup

Given the medical text corpus and the imbalance of classes associated with the dataset, we con-

ducted a series of experiments. The experiments are based on three parameters: the chosen BERT

model, the technique to handle the imbalance of the data and the way BERT tokens longer than

512 were managed. In total, 13 balancing techniques, three BERT models and three token han-

dling algorithms were considered. The Models and techniques were all fully compared, however,

we decided to only test the different token aggregate techniques on the best combination of the

previously best-performing factors. In total, 65 experiments have been run to find a suiting model.

Choosing Hyperparameters. Due to time constraints we ran all experiments with equal hyperpa-

rameters. We choose the hyperparameters by prior experience and paper reviews. [68] Our MLP

architecture consisted of one hidden linear and one batch normalisation layer. The input size was

determined to be 768 nodes.

• Epochs: 150

• Batch Size: 64

• Learning Rate: 1e-4

• Hidden Layer Size: 64

Balancing Techniques. The method used for imbalance handling can be sorted into two categories

- Weighting- and Oversampling techniques. The first category covers the loss function Focal

Loss [70], as well as the class balancing rudiments class weighting [69] and weighted random

sampler [49]. Covering the oversampling techniques, we used SMOTE [50] and its varieties, as

well as Adasyn [57]. We also did crossovers of the two categories mainly using Focal loss.

Managing long Texts with BERT. For long texts with BERT, the simplest method we contem-

plated was trimming off all tokens after a count of 512. This is the most common way found to

deal with long texts. [76, 77] Furthermore, we investigated a process where text corpora bigger

than 512 tokens get split into multiple chunks. Each chunk has the [CLS] token embedding added

as its first token and, after processing the embeddings, gets summed up. At last, a normalization

is calculated, as proposed by [78]. The last method investigated is based on the second method

introduced, the only difference being that the number of chunks per text is tracked and the summed

up embeddings are divided by it to calculate an average before normalizing. [79] Table 4.8 shows

all parameters in an overview.

Embeddings were extracted prior to the individual training of each BERT model. Training was

then conducted separately with the extracted embeddings on the model mentioned above. All

combinations have been evaluated on a multitude of metrics.

We are aware that the setup lacks finesse in terms of the hyperparameters, however, we were under

the perception that all techniques would perform equally badly when using the same hyperparam-

eters, thus making them comparable.
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Models Token Handling Balancing Methods

German Base-BERT First 512 Tokens Plain Data & Model
gBERT-Base Summed up embedidngs Focal Loss
German MedBERT Summed up and averaged embeddings Class Weighting

Weighted Random Sampler
Class Weighting + Weighted Random Sampler
SMOTE BL
SVM-SMOTE
SVM-SMOTE + Focal Loss
Adasyn
Adasyn + Focal Loss
SMOTE ENN
SMOTETomek

Table 4.8: Bert Experiment Parameters; All parameters for the conducted BERT experiments are
listed in this table to give an overview.

4.3.4 Text MLP Model

To construct the text-only prediction model, the experiments conducted on the BERT model were

evaluated. We chose the best-performing combination of the parameters seen in table 4.8. The

best-performing combination was evaluated to be gBert, weighted random sampler and class

weighting and summed up embeddings. For this combination we first used the iteration one text

embeddings and compared the results after the error analysis with the embeddings of iteration two.

Figure 4.4: Text Model Architecture of iteration one and two. Blue nodes resemble linear layers,
while green ones are batch normalization layers. In- and output layers for both iterations are the
same, as well as the count of hidden layers. The only difference in the architectures can be seen in
the size of the hidden layers.

Model Architecture. As seen in figure 4.4, the architecture consists of a 768 linear input layer,

the size having been determined by the embedding size delivered from BERT. Furthermore, we

used alternating linear and batch norm layers with different layer sizes for iteration one and two.

The output layer was chosen to be one, since the model needed to make a binary decision as loss

function binary cross entropy loss with class weights was used.

Hyperparameter selection. To get suitable hyperparameters, we conducted a hyperparameter

search for both of the models. The selected hyperparameters can be seen in table 4.12. The column
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grid search minimum states the lowest possible values that can result from the search, while grid

search maximum states the highest. Grid search steps displays the amount the algorithm can add

withe conducting the grid search. Iteration one and two hold the values that resulted from the grid

search. Parameters excluded from the hyperparameter optimization were where the possibility of a

decremental hidden layer architecture and the class weight. A decremental architecture, however,

was tested with the given parameter, but performed worse. The class weight was calculated with

the ratio of the classes found in the cohort. We deliberately chose a maximum of 64 hidden

dimension size, since the embeddings of the last hidden layer of this model will be used as an input

to the ensemble model (chapter 4.4) and we thus wanted to prevent the curse of dimensionality.

Hyperparameter Grid Search Minimum Grid Search Maximum Grid Search Steps Iteration 1 Iteration 2

Epochs 50 1000 20 185 145
Batch Size 8 96 8 32 80
Learning Rate 1e-6 1e-4 1e-1 1e-5 1e-4
Regularization Lambda 0.01 0.07 - 0.03 0.022
Layers 2 4 1 3 3
Hidden Dimension 16 64 8 64 16
Decremental - - - False False
Class Weights - - - 0.0102, 0.5525 0.0102, 0.5525

Table 4.9: Hyperparameter Optimization and resulting hyperparameters. The table shows, from
left to right, first the selected ranges and steps for the grid search and, in the last two columns, the
hyperparameter resulting from the grid search for iteration one and two.

4.3.5 BERT Pretraining

As gBERT is a general purpose German NLP model, its capabilities are not optimized for pro-

ducing embeddings that are suitable for predicting disease. There are two possible approaches

to improve the ability of a BERT model for a specific language domain like medicine. The first

is pre-training, where the complete model gets trained from the ground up, including learning a

vocabulary. This approach, however, is dependent on large quantities of text from that specific

domain, strong processing units and time. BERT Models that underwent this procedure do exist

but unfortunately only for the English language. [80] The another pretraining approach is, where

the model learns a defined task and, in doing so, learns how to adapt its embeddings in a way that

contributes to this task. This approach is not as time intensive and can be done on a smaller text

corpus. The German Med-BERT we proposed in the text experiments section (section 4.5.2) is

such a model, though it has not been pretrained for the classification of kidney graft loss but for

general disease prediction.

Pretraining Task Definition To improve our prediction on the text corpus, we decided to also

pretrain BERT on a task comparable to our downstream task. We had to diverge from the labels of

the main task, since those were to sparse for daily labeling. Instead we pretrained the BERT model

on predicting risk-factors of graft loss. Our labels were produced using the RIFLE [8] scheme.

Since the RIFLE scheme defines stages that lead to a graft loss, it is possible for the BERT model

to associate fine grained risk-factors with the texts. Table 4.10 shows the definition of the RIFLE

criteria. We neglected the urine output, as advised by the medical professionals.

A requirement to calculate the RIFLE score is a baseline creatinine value need for each patient, to
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Label GFR (glomerular filtration rate) Criteria Urine Output Criteria

RISK Increased Baseline Creatinine x 1.5 or GFR decreased > 25% Urine output < 0.5 ml/kg/h x 6 hours
INJURY Increased Baseline Creatinine x 2.0 or GFR decreased > 50% Urine output < 0.5 ml/kg/h x 12 hours
FAILURE Increased Baseline Creatinine x 3.0 or GFR decreased > 75% Or Baseline Creatinine>4 mg/dl Urine output < 0.3 ml/kg/h x 24 hours or anuria x 12 hours
LOSS Persistent Acute Kidney Failure = Complete loss of kidney functions> 4 weeks
ESRD End Stage Renal Disease (ESRD) Complete loss of kidney function> 3 months

Table 4.10: RIFLE Criteria for AKI prediction. The most left column shows the produced label
for the pretrain task. While both of the other columns show the criteria for the risk factors. [8]

calculate which we use a formula define by Závada et al. [81]

BaselineCr = 0.74 − 0.2 ∗ int(isFemale) + 0.08 ∗ int(isBlack) + 0.003 ∗ age

Lastly, we cleaned our texts using the iteration two pipeline and assigned the produced labels by

date and patient id. The balance of the dataset can be observed in figure 4.5

Figure 4.5: Balance of pretrain Dataset (logarithmic x-scale). The no risk label is still dominant in
the dataset even when there are multiple labels.

Hyperparameter selection As with the previous model, we also conducted a hyperparameter

search for the pretrain process. Table 4.11 shows the grid search and resulting parameters. The

model was pretrained on 101.217 examples.

Hyperparameter Grid Search Minimum Grid Search Maximum Grid Search Steps Final Parameters

Epochs 2 6 1 5
Batch Size 16 64 8 64
Learning Rate 1e-7 1e-4 1e-1 6.0353398951111545e-06
Warm-up Steps 1 5 1 2

Table 4.11: Hyperparameter Optimization and resulting hyperparameters of BERT pretraining.

We finally trained the gBERT model and extracted the embeddings from it. The BERT model was

trained using the same balancing techniques as the MLP text model.
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4.4 Ensemble Learner

As the goal of this thesis is to prove that the addition of text will improve the prediction of graft

failure after a kidney transplant, a model architecture was needed that combines the two vector

representations for text and tabular data. Simply concatenating the vectors would have been an

option, however, the length for only the text representation was 768 and adding the 299 tabular

features to it resulted in a 1067 long input vector. The total number of examples available to us

were 1263. Thus, hitting the curse of dimensionality was very likely, prompting us to leave out this

design. Instead we went with an ensemble approach, which allows for a meaningful downsampling

of the embedding size before concatenating.

Figure 4.6: Ensemble Model Architecture. Beginning at the top of the figure the two previous
models mentioned in the sections 4.2.2 and 4.3.4 receive the data they have also been trained on
previously. The prediction head of the models has been removed and the resulting embeddings are
concatenated and passed to the ensemble head with an input size of 96.

Model Architecture. We did not run experiments for this model. Instead we used the best-per-

forming and overlapping techniques from the previous two models, which were class weighting

and weighted random sampler plus class weighting. So two ensemble models had to be created

with different layers and hyperparameters. All the parameters of the text model regarding the

BERT model and feature aggregation were kept the same, as well as the transformations used on

the tabular data. To construct the model, we pretrained the text and tabular model, removed the

last layer and kept the layers from training. We concatenated the outputs of the models and used

them as input for the head of the ensemble model. Figure 4.6 shows a generalized architecture for

both of the ensemble models. As loss function we used binary cross entropy loss.
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Hyperparameter Selection. We again conducted a hyperparameter search. This time we in-

creased the ranges even further for epoch, batch size, layers and hidden dimensions to find suitable

parameters. We also enabled the algorithm to choose between a decremental and homogeneous ar-

chitecture. A further option could have been to unfreeze the pretrained model layers, however we

decided to neglect this as a hyperparameter and always went with the freezing option. Table 4.12

shows the selected parameters for the search and their ranges, as well as the resulting parameters

for the class weighting and class weighting + weighted random sampler model.

Hyperparameter Grid Search Minimum Grid Search Maximum Grid Search Steps CW CW+WRS

Epochs 100 8000 200 6000 2500
Batch Size 64 1024 64 1024 64
Learning Rate 1e-8 1e-4 1e-1 1e-5 1e-5
Regularization Lambda 0.01 0.07 - 0.1 0.1
Layers 0 4 1 2 0
Hidden Dimension 16 128 8 112 48
Decremental [True, False] - - True False
Freeze Layers - - - True True
Class Weights - - - 0.0102, 0.5525 0.0102, 0.5525

CW - Class Weighting WRS - Weighted Random Sampler

Table 4.12: Hyperparameter Optimization and resulting hyperparameters of the ensemble model.
Interesting to note is the high number of epochs and the small number of hidden layers on the
CW+WRS model.

4.5 Summary

This chapter covered the full implementation used to prove our hypothesis. It started by stating the

hypothesis that medical text is complementary to medical tabular data and went on with defining

the problem. We then described the Random Forest baseline model which we were competing

against. Furthermore, a description of the feature selection and preparation, done by Haldar et al.

[26] and adopted by us, was given. Striving away from the baseline approach, our first model, the

tabular MLP, was introduced and explained in great detail, from hyperparameters to architecture,

followed by an overview of our medical text data cleaning pipeline and the same information

model related information for the MLP text model. A short excursion detailing the fine-tuning

attempt can be found after that. The labeling procedure and the setup of the BERT model is

explained in this part. Lastly, we presented the ensemble model which resulted from combining

all the aforementioned factors.



5 Implementation

In this section we will cover how the in the previous chapter mentioned implementations have

been done. We first will take a close look into the produced experiment and train environment

analyse there hardware an software.

5.1 Environments

A digital environment is a dedicated space in which all the requirements to run a piece of software

or an application are met. Those requirements include processing resources, such as RAM, GPU

or CPU, additional software components, global variables and the structure the environment itself

is made from (Docker Container, Conda Env). [82] Usually in a software project, there are the

development and production environments but when working with machine learning, a third one

is added, the training environment. While the development environment is used to program and

test the application, the production environment grants the customer access to the application.

Meanwhile, the training environment exists to train a machine learning model.

In this section we will cover the construction of our experiment and training environments.

5.1.1 Experiment Environment

In the experiment environment we conducted small scale experiments that would give us an out-

look of which led us to choose the architecture. Furthermore, we also evaluated our models and

data in this environment.

Processing Resources As the only processing unit provided was a CPU, working on this machine

was rather slow. The CPU is not state-of-the-art and a GPU or TPU is completely missing. The

operating system was a default Windows 10 installation and was not changeable. This led to some

problems with the training environment, as it runs on Ubuntu. The provided 9GB of memory

proved insufficient for some cases.

Software Packages We used Python 3.8 as our main interpreter and pip as a package manager. As

further packages for data visualisation we used seaborn 0.11.0, pandas 1.1.3, mathpltlib 3.3.2 and

numpy 1.15. Furthermore, Jupyter Notebook was used to prototype.

42
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Figure 5.1: Used operating system and hardware components in our experimental environment.

5.1.2 Training Environment

The training environment given to us was much more capable and was solely used to do intense

training setups.

Processing Resources As we were fine-tuning BERT on ca. 60.000 Text and were extracting

about 6500 embeddings per run, potent resources were needed to shorten the processing time

and allow for such large amounts of data to be held in the RAM. Figure 5.2 shows our available

resources during the project for the training environment.

Figure 5.2: Used operating-system and hardware components in training environment.

The provided CPU is state-of-the-art and the RAM holds a reasonable amount of space. However,

the most important component for a training environment is the GPU or TPU which calculates all

transformations of the tensors during training. The one available to us, while not state-of-the-art

or principal for ML tasks, was entirely sufficient for our use case. As an operating-system Ubuntu

18.04.3 was provided.

Software Packages Our main programming language used was Python 3.8. Python offers the

option to import third party packages to harness their implementations. To build and train our

models, we used PyTorch 1.7.1 and Huggingfaces Transformers 4.5.0. Processing the data was

done by using pandas 1.1.3 and scikit-learn 0.23.2. For the hyperparameter optimization we used

hyperopt 0.2.5 for the MLP models and optuna 2.7.0 + transformers hyperparameter search engine.

Lastly, we used conda to create our packaging environment and the shell engine to execute our
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scripts.

To port our versions onto this machine, we used git. A GPU-friendly Docker version was chosen,

however, we ran into proxy-server problems that rendered us unable to pull the repository. Con-

sequently, we defaulted to running our scripts directly on the OS. This had the unfortunate side

effect that the script would stop running whenever the server connection was lost. To circumvent

the problem, we used hohub to demonise the python scripts.

5.2 Flow of Application

The full flow of data through the application can be seen in illustration 5.3. Two endpoints are

necessary to be contacted. Data expected is unstructured medical text and tabular data. The data

then experiences the implemented full-on cleaning methods implemented and gets passed as an

input to the two base models, which, in return, produce the embeddings for the ensemble model.

Figure 5.3: The full flow of data through the application. From the extraction of the data from
T-Base to the actual prediction, the illustration shows, from left to right, every step in a macro
view that is conducted to get the results.

5.3 Summary

In this chapter, we discussed the environments provided to us to work in. Additionally, we gave

an overview of the full flow of data through the application. Machines not sharing the same

operating system are sometimes difficult to get to work in tandem, as some requirements are

different. Furthermore, the choice of python packages was laid out and their usage explained.



6 Evaluation

In this chapter, the results of created throughout all the experiments we conducted are covert, eval-

uated and interpreted. Furthermore, we conducted a qualitative and quantitative error analysis.

The first section starts by covering the results produced in the machine learning experiments cov-

ered in the sections 4.2, 4.3, 4.4 and ends on comparing the them with the results of the baseline

model provided by Haldar et al. [26], while the second section investigates the flaws and wrong

predictions caused by data and models, i.e. error analysis.

6.1 Results

This section will cover the results collected throughout all of our experiments. The results will

be explained and discussed, as well as compared and interpreted in each section. As we have two

base models which are combined into a single ensemble model, it is important to not only discuss

the end results of the ensemble. To fully understand the results, the metrics of the base models

have to be investigated, as well. We will begin by examining the results produced by the tabular

model, followed by the text model and, finally, the ensemble model. The last section will compare

the results of all models with the baseline. [26]

How to Read We considered the F1-Score to be the most important metric for our project, as it is

the harmonic mean of precision and recall and represents imbalanced datasets well. Further it is

used frequently as a evaluation metric for classification tasks, thus makes our work comparable.

Our design decisions for the final model were also based on the F1-Score. We decided to mark

the decision making metric with a green color. Furthermore, the best results for a single metric is

always outlined as bold type. Other important scores will be marked as blue, however, the reason

for their importance will vary and be explained in text. Lastly, the worst-scoring model will be

colored red. All scores displayed are macro averages.

Furthermore, the term homogeneous layer architecture refers to a feedforward layer architecture,

where each hidden layer has the same number of nodes, while a decremental layer architecture

refers to one where the number of nodes decreases with each following layer. This is illustrated in

figure 4.4 and 4.2.

45
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6.1.1 Tabular Model

As mentioned in section 4.2.1, we conducted experiments to find the best-suited balancing tech-

nique and model architecture. The results of this process are reproduced in table 6.1.

Experiments Colored green the table 6.1, a decremental MLP architecture supported by WRS

scores the highest F1-Score of 0.493, closely followed by a model using plain data scoring with

0.492. The weakest results were produced by a combination of SMOTE and a non-decremental ar-

chitecture only reaching an F1-Score of 0.248. It is noteworthy that the heterogeneous architecture

using weighted random sampler scores much higher on recall and F2-Score, thus making it better

at predicting failures. Even though the failure class is considered to be the more important one, we

chose the F1-Score as our decision-making metric, hence we did not proceed with a homogeneous

layer architecture.

Metrics Simple CW WRS WRS+CW FL SMOTE

Recall 0.507 0.586 0.654 0.514 0.515 0.439
Precision 0.500 0.510 0.510 0.510 0.500 0.390
Accuracy 0.858 0.462 0.596 0.734 0.736 0.311

MLP F1-Score 0.479 0.336 0.402 0.442 0.443 0.248
(Homogeneous) F2-Score 0.506 0.568 0.620 0.511 0.512 0.449

AUC 0.507 0.586 0.654 0.514 0.515 0.439
MCC 0.006 0.046 0.084 0.009 0.009 -0.036

Recall 0.493 0.464 0.495 0.442 0.480 0.440
Precision 0.490 0.500 0.490 0.490 0.490 0.230
Accuracy 0.968 0.773 0.971 0.868 0.942 0.863

MLP F1-Score 0.492 0.447 0.493 0.465 0.485 0.463
(Decremental) F2-Score 0.493 0.47 0.494 0.451 0.482 0.449

AUC 0.493 0.464 0.495 0.442 0.480 0.440
MCC -0.016 -0.024 -0.014 -0.049 -0.028 -0.050

FL - Focal loss CW - Class Weighting WRS - Weighted Random Sampler

Table 6.1: Numeric MLP Experiments. Best scoring architecture can be noted down as WRS +
decremental layers, followed closely by a plain use of the data. Still interesting to note is that a
homogeneous architecture is able to predict failure better.

Chosen Architecture Evaluating the experimental scores, we selected a decremental architecture

combined with either a weighted random sampler or a pure data approach. After finding fitting

hyperparameters for both of the architectures, the pure data approach significantly outperforms

the WRS approach regardless of the metric, as seen in table 6.2. A thorough investigation of the

comparison on the final models closely the pure data attempt, might outperform in every metric,

however the differences are minimal. Except for recall, which shows a discrepancy of 6%. Metrics

directly related to the recall, like F2-Score, also show a significantly higher result. A alteration

from the baseline RF model to a MLP was needed to extracted the embeddings and be able to

combine them with the text data.

Interpretation The experiments show clearly that using SMOTE is the weakest approach. We

hypothesize that this is due to the fact that all experiments used the same number of epochs and

the same learning rate for training. Over-sampling techniques fall short of being effective in this
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Metrics Simple Weighted Random Sampler

Recall 0.61 0.55
Precision 0.54 0.52
Accuracy 0.93 0.94

MLP F1-Score 0.55 0.53
(Decremental) F2-Score 0.6 0.54

AUC 0.61 0.55
MCC 0.13 0.07

Table 6.2: Numeric Decremental MLP Final Model. The table shows the two models that were
shown to be the best-performing ones in our experiments (table 6.1). An approach that uses the
data without any manipulation comes out on top.

scenario since, to learn a higher amount of data, more epochs or a higher learning rate would be

needed.

We further believe that a high recall could be achieved by using a homogeneous layer architecture,

since the layers offer more budget for the rare classes to be learned and remembered, thus being

more capable of predicting them.

As for the final models, the most prominent difference in their design lies in how the distribution

of their batches is managed. This might have led to the network not paying as much attention to

the minority classes, even though the weighted random sampler was set up to distribute the minor

class more uniformly. But as the confusion matrix in figure 6.1 shows, the difference in prediction

of failure is only one example apart.

Figure 6.1: Confusion matrix of tabular models. Note the difference in false negatives between
the models, leading to the high difference in recall.

6.1.2 Text Model

To find a suiting combination of BERT model, balancing technique and method to handle long

texts we conducted a myriad of experiments visible in table 6.3. In this section the results will be

explained and analysed.

Balancing Techniques and BERT Model The table shows that embeddings of the gBERT model
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Metrics Simple FL CW WRS WRS+CW SMOTE SMOTE BL SVM-SMOTE SVM-SMOTE+FL Adasyn Adasyn+FL SMOTE ENN SMOTETomek

Recall 0.50 0.587 0.70 0.50 0.766 0.635 0.535 0.475 0.487 0.619 0.622 0.598 0.635
Precision 0.491 0.508 0.602 0.491 0.601 0.512 0.504 0.497 0.499 0.510 0.512 0.508 0.512
Accuracy 0.982 0.739 0.960 0.982 0.953 0.697 0.776 0.794 0.406 0.665 0.259 0.348 0.697

gBERT F1-Score 0.495 0.453 0.633 0.495 0.642 0.442 0.459 0.455 0.303 0.428 0.220 0.276 0.442
F2-Score 0.498 0.569 0.677 0.498 0.726 0.606 0.529 0.479 0.490 0.594 0.597 0.577 0.606

AUC 0.500 0.587 0.700 0.500 0.766 0.635 0.535 0.475 0.487 0.619 0.622 0.598 0.635
MCC 0.000 0.053 0.285 0.000 0.328 0.079 0.023 -0.017 -0.007 0.068 0.077 0.056 0.079

Recall 0.500 0.584 0.554 0.500 0.616 0.576 0.575 0.588 0.404 0.400 0.473 0.357 0.576
Precision 0.491 0.508 0.527 0.491 0.538 0.506 0.507 0.516 0.490 0.493 0.494 0.479 0.506
Accuracy 0.982 0.734 0.950 0.982 0.934 0.580 0.715 0.879 0.243 0.509 0.103 0.150 0.580

MedBERT F1-Score 0.495 0.450 0.535 0.495 0.552 0.389 0.442 0.508 0.204 0.347 0.098 0.136 0.389
F2-Score 0.498 0.567 0.548 0.498 0.599 0.560 0.560 0.572 0.419 0.415 0.477 0.376 0.560

AUC 0.500 0.584 0.554 0.500 0.616 0.576 0.575 0.588 0.404 0.400 0.473 0.357 0.576
MCC 0.000 0.051 0.077 0.000 0.134 0.041 0.045 0.075 -0.061 -0.054 -0.026 -0.109 0.041

Recall 0.500 0.572 0.553 0.500 0.484 0.492 0.570 0.508 0.657 0.653 0.663 0.625 0.492
Precision 0.491 0.506 0.525 0.491 0.498 0.499 0.506 0.501 0.511 0.511 0.514 0.51 0.499
Accuracy 0.982 0.710 0.947 0.982 0.813 0.691 0.707 0.860 0.464 0.594 0.338 0.401 0.691

Base-BERT F1-Score 0.495 0.440 0.532 0.495 0.462 0.425 0.439 0.480 0.341 0.401 0.272 0.306 0.425
F2-Score 0.498 0.557 0.547 0.498 0.487 0.494 0.556 0.507 0.622 0.619 0.626 0.598 0.494

AUC 0.500 0.572 0.553 0.500 0.484 0.492 0.570 0.508 0.657 0.653 0.663 0.625 0.492
MCC 0.000 0.043 0.073 0.000 -0.011 -0.005 0.042 0.007 0.085 0.084 0.094 0.069 -0.005

FL - Focal loss CW - Class Weighting WRS - Weighted Random Sampler
ENN - Edited Nearest Neighbor BL - Boarderline

Table 6.3: BERT Models Experiments. The table shows all results of the conducted experiments.
The used model can be noted on the left-handed side of the table, while the balancing techniques
can be seen on top. Best results for a model and a metric are in bold. Furthermore, the decision
making score is marked as green. All experiments have been run with the summing-up technique
described in section 4.3.3.

and a combination of weighted random sampler and class weighting performs the best. The

weakest embeddings are provided by Base-BERT, underperforming for most of the experiments.

However, considering individual results, Base-BERT’s embeddings seem to be better-suited for

oversampling, as they outperform SVM-SMOTE+FL, Adasyn+FL and SMOTE ENN. For other

oversampling techniques it is close to the best result. Albeit higher-scoring on those techniques,

Adayn+FL is the weakest performing experiment overall. Further interesting to note is the fact

that all three models perform exactly the same when no manipulation on the data occurs or WRS

is used, see the column "Simple" and "WRS" on table 6.3. Simple means an absence of any

balancing technique.

Metrics CW WRS+CW

Recall 0.700 0.766
Precision 0.602 0.601
Accuracy 0.960 0.953

gBERT Summed F1-Score 0.633 0.642
F2-Score 0.677 0.726

AUC 0.700 0.766
MCC 0.285 0.328

Recall 0.483 0.693
Precision 0.490 0.573
Accuracy 0.947 0.947

gBERT 512 Tokens F1-Score 0.486 0.602
F2-Score 0.484 0.665

AUC 0.483 0.693
MCC -0.026 0.238

Recall 0.554 0.623
Precision 0.527 0.552
Accuracy 0.950 0.947

gBERT Summed Average F1-Score 0.535 0.570
F2-Score 0.548 0.607

AUC 0.554 0.623
MCC 0.077 0.160

CW - Class Weighting WRS - Weighted Random Sampler

Table 6.4: gBERT Method Comparison. Results of the comparison of the methods mentioned
in section 4.3.3. Evaluating the table clearly leads to the conclusion that the best-suited token
handling method is the method of summing-up.

Token Handling Methods Following our decisions on model and balancing technique, we also
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conducted the experiments to find the right token aggregation technique. Table 6.4 shows the

results of this setup. Our investigation shows that the best technique is summing-up the tokens.

Leading with an F1-Score of 0.642 and beating the other methods by 0.04 and 0.72.

Metrics WRS+CW Iteration 1

Recall 0.754
Precision 0.520
Accuracy 0.654

MLP F1-Score 0.435
(Homogeneous) F2-Score 0.692

AUC 0.754
MCC 0.143

CW - Class Weighting
WRS - Weighted Random Sampler

Table 6.5: Text MLP Final Model. Important to note is that even though iteration 2 performs
significantly better, the results of the ensemble model result of use iteration 1.

Final Model Concluding the experiments, we decided to use WRS and CW for handling the bias

in the dataset. The first iteration shows a high recall and F2-Score, predicting the failure classes,

complementing the results of the tabular model well.

Interpretation The model that prevailed in BERT experiments is the gBERT model, which is not

surprising, as gBERT has been trained on substantially more data then Base-BERT, thus making it

better at generalizing. MedBERT is a fine-tuned version of Base-BERT, hence has seen the same

potential, however, having been fine-tuned for the task of disease prediction gave it the edge over

Base-BERT, while still being at a disadvantage against gBERT, probably due to the larger dataset.

As the data is hardly distinguishable, as figure 6.2 shows, oversampling generally is not the right

tool to enhance the prediction. It may add more samples but it will not make individual samples

easier to distinguish. The results show clearly that this is the case, as none of the oversampling

techniques were able to beat the simple version of the data, except for the SVM-SMOTE. However

it was expected that SMOTE BL and Tomek would perform well, since they clean up the dataset

prior to oversampling. Additionally, the same problem mentioned in the previous chapter occurs

for the oversampling techniques.

Looking at table 6.5, iteration one is able to predict the failure class almost completely but is also

unable to distinguish success classes well from the failure class. Corresponding with physicians,

this result is expected, as clinical text data is biased towards failure, since medical staff tends to

only write about events impacting a disease negatively.

6.1.3 Ensemble Model

The ensemble model uses the most successful techniques of the two previous models. Using

the pre-trained ensemblers, the ensemble model was able to outperform both of them. For this

approach the text of iteration 1 has been used. The combination of WRS and CW significantly

beat the only CW attempt in all metrics, seen in table 6.6, even producing a 6% higher F1-Score.



Chapter 6. Evaluation 50

Figure 6.2: Plots showing the text embeddings for each model using dimensionality reduction
technique t-sne. The classes of the data plotted are hard to differentiate regardless of the model
that produced them, thus making them difficult to classify.

Metrics CW WRS+CW

Recall 0.66 0.69
Precision 0.53 0.57
Accuracy 0.89 0.94
F1-Score 0.53 0.59
F2-Score 0.63 0.66

AUC 0.66 0.69
MCC 0.14 0.22

CW - Class weighting WRS - Weighted random sampler

Table 6.6: Ensemble Learner Results. Showing the results of the two most successful methods of
the previous models.

Interpretation The strong result of the ensemble model can explained with the compatibility of

the two base models. As the text model is biased towards failure, the text model is able to predict

failures the tabular model is not able to and vice versa, thus giving the ensemble head strong hints

towards predicting the right class.

Figure 6.3: Confusion Matrix of Ensemble models. Both methods predict the failure class equally
well, however success is predicted better by the WRS + CW approach.
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6.1.4 Comparison of Results

Gathering all relevant results produced, table 6.7 shows that the ensemble model performs the

strongest in terms of the F1-Score. The baseline is outperformed by 6% on the F1-Score and can

record an increase of 16% of the MCC, hence handling the imbalance of the data much better. Of

further note is that the tabular model already outperformed the baseline’s F1-Score by 2% and that

the text model is predicting failure the best.

Metrics RF Baseline [26] MLP Decremental Tabular Simple MLP Homogeneous Text WRS+CW Ensemble WRS+CW

Recall 0.55 0.61 0.75 0.69
Precision 0.52 0.54 0.52 0.57
Accuracy 0.94 0.93 0.65 0.94
F1-Score 0.53 0.55 0.43 0.59
F2-Score 0.54 0.6 0.69 0.66

AUC 0.55 0.61 0.75 0.69
MCC 0.06 0.13 0.14 0.22

CW - Class Weighting WRS - Weighted Random Sampler
MLP - Mulit-Layer perceptron

Table 6.7: All Models Comparison. This table shows all results of the models produced in this
work, including the RF baseline, clearly showing that the ensemble model outperformed all other
models regarding the F1-Score.

6.1.5 Iteration two Text and Pre-Trained

To further denoise the text data we developed our text cleaning pipeline further and pre-trained the

BERT model used. The results of these efforts can be seen in table 6.8. In all previous mentioned

work only text iteration one has been used, iteration two has not been part of the ensemble model

and still needs to be investigated in tandem. However, a comparison of the results of the shallow

cleaned iteration one text and heavily cleaned iteration two test is important as it gives insight into

what effects the cleaning measures had on the prediction. Furthermore, comparing the pre-trained

iteration two approach to the untuned results will contribute to our third hypothesis.

Final Models Iteration one, as in all other tables, still shows the highest recall of all models, which

may be due to spurious correlations within the text. Although, the iteration two has a reduced recall

but an increased F1-Score of 0.139. As the confusion matrix in figure 6.4 shows, iteration one is

much more capable of identifying failures, while at the same time missclassifying successes as

failures. pre-training the BERT model on graft loss risk definitions and applying a prediction on

the embeddings increases the F1-Score even further. Also, interesting to note is the prediction of

the negative classes by the iteration two standard and pre-trained model. As both have the same

ratio and possibly the same patient miss-classified (figure 6.4).

Interpretation The bias towards the failure class found in text iteration one, as mention in section

6.1.2, seemed to be having a strong influence on the prediction. The cleaning pipeline of the

iteration two text seems to have remedied that, as indicated by the lower recall of iteration two.

We believe that this is because of non medical data that influenced the prediction, but got removed

in iteration two. Furthermore, pre-training BERT on AKI risk factors and thus introducing him to

medical concepts helped improve the prediction. Considering the recall of the iteration one text

model and the precision of the tabular model the combination of the two seem to be complementary
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Figure 6.4: Confusion matrix of tabular models.Note especially the difference in false negatives
between the models, leading to the high difference in recall.

Metrics Text Iteration 1 Text Iteration 2 Text Iteration 2 + Fine-Tune

Recall 0.75 0.62 0.63
Precision 0.52 0.56 0.58
Accuracy 0.65 0.95 0.96

MLP F1-Score 0.43 0.57 0.60
(Homogeneous) F2-Score 0.69 0.61 0.62

AUC 0.75 0.62 0.63
MCC 0.14 0.17 0.21

Table 6.8: Evaluation of Text Model Results. All models used the same balancing technique
WRS+CW. However, different text features have been used and pre-training was applied.

(table 6.7). However, considering the high drop of recall in the iteration two models implementing

this model in the ensemble architecture, might lead to a weaker performance. Due to the iteration

two model lacking the capability of predicting failure patients. So, a clear improvement in terms

of ensembling might not be given. Only further experiments will show if text iteration two also

performs better in tandem.

6.2 Error Analysis

This section will cover the investigation of the data and the performance of the model. For the

qualitative error analysis of the model, we chose to conduct a data ablation test, which shows how

well the models learn with more or less data. Following the qualitative error analysis of the text

data by investigating features of the text that reduce the predictive capability of the model. To see

the robustness of the text model, we also did an ablation of text to assess the robustness of the

text model and to see if the model understands the text in regards to the labels. After that, tabular

features are examined to reveal their flaws. Additionally, we conducted an experiment where we

compared the most important features selected by the model with a selection of features chosen

by medical doctors. Lastly, we examined the influence of the two base model on the predictions

of the ensemble model.
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6.2.1 Quantitative Error Analysis

To cover the quantitative error analysis, we conducted a quantitative data ablation test on all the

relevant models. Evaluating the capability of a model to learn with more data is important in the

context of an imbalanced dataset, as models tend to overcome imbalance of labels as the amount

of data grows. [83] As figure 6.5, shows the tabular model using the simple architecture, the text

model used WRS and CW and lastly the ensemble model using WRS were considered. To set up

the test, we used 15%, 40% and 70% of the training dataset to train on and always tested on the

same test set, choosing the F1-Score as the metric to improve upon. Furthermore, figure 6.6 shows

that over-fitting was prevented.

Figure 6.5: Models Data Ablation Test. The Figure shows how the models are able to improve
with larger quantities of data. The Y-axis covers the resulting F1-Score, while the X-axis displays
the corresponding percentile of data used.

According to figure 6.5, all considered models are able to learn more off larger amounts of data.

Differences can be noted in the rise of the curves, as the tabular model improves at a linear rate,

while the text and ensemble models learn the most within the first 40% of the dataset. After that

the slope of the curve declines.

Figure 6.6: Precision and Recall curves of all models. From left to right tabular, text, ensemble.
According to the curve all model did not over-fit

Understanding the Tabular model To better understand the decisions of the ensemble model, we

looked at the individual predictions of the base models and compared those with the decisions the

ensemble model made. The result of this investigation can be examined in table 6.9. We conducted

this experiment on the test dataset, which is the same for all three models.

Noting the first row, when both the base models predict all examples correctly, the ensemble

model also gets almost all of them right. The reason for this might be that some of the examples

have contradictory tabular and text data. The next two rows show how much influence the base
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Total Overlap Tabular Text Ensemble R|W

230 Right: 230 Right: 230 224|6
123 Right: 123 Wrong 123 113|10
18 Wrong: 18 Right: 18 13|5
8 Wrong: 8 Wrong: 8 7|1

Table 6.9: Model Comparison Predictions. The tables shows for each row a selection of examples
that are overlapping for the, in column two and three, described outcomes (right and wrong). The
last column shows the prediction the ensemble model made on the same examples and the first
columns shows the total number of examples considered.

model has on the decision of the ensemble model. When the tabular model predicts right and

the text model wrong and vice versa, the majority of predictions on the ensemble model are also

right. Giving us reason to believe that the influence the tabular model has on the prediction of the

ensemble model is higher, despite the embedding size of the tabular model being half as big (figure

4.6). Whenever both base models predicted examples incorrectly, the ensemble got most of them

right. This might be due to the fact that the individual model did not have enough information for

the prediction individually, however combining their data complements the information.

6.2.2 Qualitative Error Analysis - Tabular Data

This section will cover the quality of the tabular model, as well as the data. First we will investigate

the feature quality and, in the end, we will compare the top features for failure prediction chosen

by the model and actual medical doctors.

Tabular Feature Analysis

As we investigated the pipeline for tabular features, many flaws became visible. Categorical fea-

tures became numerical and categories that were supposed to be identical were duplicated due to

spelling mistakes.

Imputation - the Death of Categorical Features As mentioned in section 4.1, an imputation

was performed on the tabular data to fill in missing values. The imputation technique chosen

by [26] Haldar imputes depending on the data available continuous values. The whole dataset was

processed by the imputation without removing the categorical values and, as categorical values are

discrete, continuous values were introduced to their feature range, effectively converting them to

numerical values.

Shortcomings of categorical features Another technique that impaled the categorical features

was the one-hot-encoding. Categories that hold only two states, like the sex of a patient, can be

depicted as one feature. Applying one-hot-encoding to such features causes them to be split into

two features with mirrored values and thus makes one of the features redundant.

Further we found one category of the feature "Spenderart", which points out if the donor was alive,

related or dead at the time of transplantation, that had a spelling mistake and through this incident
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generated another category, adding "hirntot" as a state next to "Hirntot".

Numerical to Categorical Lab values like the ProteinTUR (amount of protein in urine) have

been aggregated over time periods by Haldar [26] (like mean of 3 months, mean of overall etc.),

clearly supposed to produce a numerical value. The way most Lab values are stored in T-Base

is by an ordinal encoding which goes by the encoding of triple minus to triple plus. The SQL-

query creating the mean values, however, only adds a 1 to a counter regardless of the number

of pluses found in the encoding, whereby negative values are completely neglected and positive

values partially. Furthermore, to calculate the mean, the total count of values considered needs to

be calculated, however, only entries that had a plus were added to the total number of values, thus

making the ProteinTUR a categorical feature that only states if there was a positive entry or not.

Human vs. Machine

Understanding the prediction a model makes is an important part of error analysis, as this kind

of investigation can lead to further improvements when, for example, features gain unexpected

importance, which could indicate that the feature may have been prepared in a bad fashion. Figure

6.7 shows the features most important to the tabular model for predicting the failure class. To

understand if the features selected by the model make sense, we gave a board1 of all features

available to the model to five physicians and let them pick their top 10 features. To make the picks

of the medical doctors more comprehensible, we used the ranking of the selected features as scores

and added them up, which resulted in figure 6.8. A full overview of all picks can be seen in the

appendix.

Model Picks To evaluate the features of the model, we asked one medical doctor to investigate

them. The patient age (second strongest feature) was found to be a strong feature for the predic-

tion, which was also confirmed by the physician. Additionally, further the patient’s sex might be a

good indicator, as men tend to be riskier and thus have a higher chance of losing kidney. Moreover,

the Banff and primary kidney function are very good indicators for the prediction of graft loss, as

primary kidney function means that the kidney is already working during the transplantation and

the Banff is an indicator for the quality of the kidney. [84] Furthermore, it was not clear to the

physician why the model was fixated on the ProteinTUR, instead of creatinine, since creatinine is

used as a biomarker for the diagnosis of kidney-related problems. [85] The importance of creati-

nine in the opinion of medical doctors becomes clear when looking at figure 6.8. The height of a

patient also might play a role, but only when the height of the donor diverges strongly, meaning the

kidney might be too small or big for the recipient. The diagnosis of a hypertonie is, in the opinion

of the medical doctor, highly ambiguous, as it can occur when a future graft loss will happen but

it can also be related to any other sickness.

Human vs. Machine Comparing figure 6.7 and 6.8, unfortunately none of the features overlap in

ranking. However, some features can be found in both rankings, like the Banff, the primary kidney

function and the protein output (Daily Protein) which correlates with the ProteinTUR favored by

the model. It is interesting to note that the physicians value the age of the donor more than the age

1https://trello.com/b/mHwx8Xxo/template

https://trello.com/b/mHwx8Xxo/template
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Figure 6.7: Top 10 tabular features ranked by importance for the prediction of failure. The features
chosen by the model are mostly protein or demographic related.
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of the receiver, while the model thinks otherwise. The most important indicator, in the opinion of

physicians, are the creatinine values of a patient. This indicator can not be found at all in the top

10 of the model.

Figure 6.8: Top 10 Features for the Prediction of Graft Loss of a Collective of five Physicians.

Feature Ablation Test

To uncover flaws in the tabular model, we investigated a single missclassified patient profile us-

ing the top 10 features and compared it to that of a similar patient whose transplant results had

been predicted correctly, seen in table 6.10. Both patients had undergone a graft loss but the pa-

tient mentioned in the first row was classified as a success. Features that are differ between the

two patients are their age, the primary kidney function and the Banff, so these features will be

investigated.

ProteinTUR All Time Age Receiver side rechts Gender W Hypertonie Gender M ProteinTUR PreTrans ProteinTUR PostTrans primary function Banff9 6

Wrong 1.0 39.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.0
Right 1.0 18.0 0.0 1.0 0.0 0.0 0.0 1.0 1.0 0.0

Table 6.10: Comparison of two simular patient examples.

Examining the age features in the training and test set (figure 6.10) shows that the model never

saw a patient of the failure class being in the age range between 30 and 45, yet exactly that is the

exact age range depicted in the test set. The missclassified patient falls into that age range. In

general, the age of failure patients more often tends to be between 60 and 70 years.

Furthermore, a correlation between females experiencing a graft loss and the primary kidney func-

tion exists in our dataset, as seen in figure 6.10. Out of 14 female patients in the whole dataset, 9
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Figure 6.9: Distribution of age by dataset. Interesting to note is the lack of the age span from 30
to 45 in the train set.

have no primary kidney function, while only 4 do have it, as a female receiving a kidney transplant

with primary functionality and losing it later is an uncommon combination, thus this example was

missclassified.

Figure 6.10: Distribution of primary kidney function in female patients experiencing graft loss. A
Bias towards not having a primary function can be noted.

To prove that the mentioned features are the cause of the missclassification, we conducted an

ablation study, changed the features by hand and observed the outcome in form of the sigmoid

values. Originaly, the sigmoid value was at 0.43. Changing the primary kidney function to 1

changed the outcome to 0.45 and additionally setting the Banff to 0 changed the value to 0.54,

thus flipping the prediction.

6.2.3 Qualitative Error Analysis - Text Data

This section will explain flaws we found related to the text corpus and text model. To conduct the

error analysis, we investigated the weaknesses of the text corpus by evaluating medical abbrevia-

tions, numbers found and unknown words produced by BERT. Furthermore, we selected a single

patient who underwent two surgeries and evaluated the impact the text copora of the transplants

have on the prediction of the model.
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Text Feature Analysis

NLP models struggle with certain parts of text, like numbers. [86] Furthermore, using slang terms

or abbreviations unseen by the model will diminish its prediction capabilities. BERT especially,

if not properly pre-trained, is not aware of characters it has never seen and, thus, does not deliver

value in these cases, or even loses some.

Category Aggregation As standardising text will improve the quality of the data, since patterns

can be recognized more easily by the model, we added the category of each Untersuchungs text

at the start of it. However there were 105 unique categories in the dataset, some of which were

abbreviations of others or spelling mistakes. By using an algorithm to aggregate the categories,

we were able to condense the total number to 82.

Figure 6.11: Top 20 Untersuchung Categories before and after Aggregation.

As figure 6.11 shows, categories like Sono or Radiologie(Teil) coulde be aggregated into Sono-

graphie and Radiologie.

Abbreviations The medical domain has its own corpus of abbreviations, an NLP model not pre-

trained on such a corpus will have difficulties interpreting the text. We found 1423 unique abbre-

viations in a list of 2514 available ones and, in total, 3.949.758 abbreviations were replaced.

Figure 6.12: Top 20 Abbreviations found in Untersuchung.

Figure 6.12 shows the top 20 abbreviations found in the corpus. Most of the places are occupied

by metrics like liter (l) or blood pressure (RR). All abbreviations can be found in the appendix.
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Furthermore, a special type of abbreviation, the TNM-Code, was be replaced algorithmically. [72]

For example pT1pN0G2R0 translates to:

“Tumorausdehnung minimal, festgestellt durch chirurgischen Eingriff. Kein Be-

fall der Lymphknoten, druch chirurgischen Eingriff festgestellt. Tumorgewebe lässt

sich eingeschränkt differnzieren. Nach Therapie kein Tumor mehr vorhanden.”

Only 79 cases were replaced.

Numeric Tokens While BERT is able to handle numbers, they pose a weakness to the predictive

capabilities of the embeddings. [86] Investigating the dataset, we found 10.305.730 number-only-

tokens, which amounts to 7.78% of all tokens.

Unknown Words Words unknown to BERT result in the [UNK] token. The most common rea-

son for BERT not recognising a word is a single character. In our corpus we were were able to

locate 62007 unknown words in total originating from 1993 unique words. The total percentage

of unknown tokens is at 0.11%. When investigating the responsible characters, we were able

to observe that most of them were accented letters, so we replaced them with their unaccented

counterparts.In the case of some characters, it became apparent that they were following a certain

pattern and could thus be replaced with known letters. Furthermore, mathematical symbols were

spelled in full.

Lastly, in some minor instances, notes written completely or partially in English were found.

Those might negatively impact the prediction, since a German language model was used.

Feature Ablation Test

To further investigate the robustness of our text model, we considered a patient with two trans-

plants, of which the first had been a failure and the second a success. We deliberately chose this

construct, as text from the first transplant should contribute towards a failure prediction, whereas

text closer to the second transplant should contribute to a prediction of success. Hence, by care-

fully neglecting texts, we are able to tell how well the model interprets the text. As an indicator

we used the sigmoid values produced by the last layer of the model.

The patient’s first transplant took place in 1990, the second one was conducted in 2007. Using all

available text concerning this patient, the result of the sigmoid value was at 0.68 and therefore pre-

dicting a failure. Using only text data from one year before until one year after the second surgery,

the second surgery until one year after the sigmoid value decreased to 0.61. Lastly, when using

only data from 2007 to 2008, the sigmoid value decreased even further to 0.57. The prediction

of the model is still incorrect, however, the approach shows that the model can interpret the given

text right.
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6.3 Discussion

Many results have been produced during this thesis, table 6.3 alone features an overwhelming

amount of results. As the results are so manifold, a discussion is needed to give an understanding

of all results and their interrelation.

As the evaluation of the given hypothesis will also take place in this section, they will be repeated

once. Our hypothesis are:

1. That medical text holds information complementary to the tabular data of the patient and

will therefore, by combining the two data types, improve the performance of the model.

2. An MLP model using a balancing technique will outperform a RF model on the same im-

balanced dataset.

3. Further pre-training BERT with AKI risk-factors that will improve graft loss prediction on

clinical notes.

Tabular Model Closely examining table 6.7, the F1-Score of the tabular model is at 55% outper-

forming the RF model by 2% and thus confirming our second hypothesis partially. Partially, since

the best chosen architecture for the tabular model, resulting from the experiments, was the sim-

ple architecture not using any balancing technique. Surprisingly, while the dataset used is highly

imbalanced the simple architecture should theoretically not achieve the best results, as it does not

handle the imbalance.

Text Model The final text-iteration-one model performs weaker on the precision, however, its

recall is through the board the strongest. The capability to predict failures might be due to a bias

in the text data, as medical doctors only tend to write down findings that contribute towards a

disease. The high recall indicates that the text model is able to predict patients, that the tabular

model is incapable of predicting, thus basing our first hypothesis.

Ensemble The ensemble model is able to outperform the baseline with a rise of the F1-Score

by 6%, as well as the individual text and tabular models. (table 6.7) This shows that tabular

and text data found in the medical database are complementary, thus proving our first hypothesis

completely. The scores of the two individual models reflect our first hypothesis, since the recall

for the text model is high, while on the other side the precision of the tabular model is also high.

The ensemble model itself does not reach an as high recall as the iteration-one-text model, but has

the second highest of all models, trading off some of its recall to profit off the predictions from the

tabular model.

Fine-Tuning Text Furthermore, we managed to pretrain the gBERT model on AKI risk-factors,

thus making the embeddings aware of the concept. Letting the model learn the risk-factors in-

creases the F1-Score by 3%, outperforming the not pretrained iteration-two-text model and thereby

proving our third hypothesis.

Quantitative Error Analysis The quantitative error analysis shows that all models are able to

learn from more data, making them suitable for a data product. Furthermore, table 6.9 shows the
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influence of the individual models towards the predictions of the ensemble model. A stronger

influence by the tabular model can be noticed. The fact that the ensemble model can predict

examples that both base models missclassify individually, adds to our hypothesis, proving that

both data sources contain complementary data.

Qualitative Error Analysis The investigations of the qualitative error analysis show that most

features of the tabular model are manipulated in a way that might lower the quality of the data.

Noting this, the tabular model might hold a much bigger potential. Moreover, the top 10 feature

picks of the model resemble this, as the most important features picked by medical doctors are not

even in the top 10 (figure 6.7 and 6.8). The features ablation test reveals weaknesses of the dataset,

as the distribution of age is lacking certain ranges in the training dataset. This is due to the fact

that the dataset is highly imbalanced towards the success class and has a low number of samples

in general.

6.4 Summary

In this chapter, we examined the results of all models and thus were able to prove our hypothesis.

Further a deep dive in to the flaws of the project was conducted. The results show clearly that an

improvement of the F1-Score is possible by combining medical text and tabular data, thus proving

our first hypothesis. Furthermore, our second hypothesis is proven by the fact that our MLP tabular

model is outperforming the baseline RF baseline model by 2%. In the end, our third hypothesis is

proven through pretraining the gBERT model on AKI risk-factors and increasing the F1-Score by

3%.



7 Conclusion

This thesis took a deep dive into the medical dataset of kidney transplant patients available in the

T-Base database of the Charité Berlin, providing an attempt for cleaning and preparing the text data

and a model to combine it with medical tabular data. By constricting the ensemble model we were

able to provide a deep insight into the individual capabilities of the two data types. Furthermore,

we investigated the effect of letting a NLP model learn risk factors to better predict a disease.

Results Our approach of combing text and tabular data using an ensemble model scores a 59%

of macro average F1-Score and thereby outperforms the Random Forest baseline by 6%, thus

proving our first hypothesis of medical text data complementing tabular data of a patient. Our first

hypothesis is further strengthened by the fact that the two base models (MLP tabular 55% and text

45% F1-Score) were unable to outperform the combined ensemble model. However, we went a

step further and pretrained gBERT on AKI risk-factors, to increase the quality of the embeddings.

The success of this approach can be witnessed in the 60% F1-Score produced by a MLP text

model, proving our third hypothesis of learning risk-factors increasing the predictive capabilities

of a BERT model. Lastly, our second hypothesis got proven by the fact that our MLP tabular

model outperforms the random forest baseline by 2% of F1-Score.

Data Achievements Moreover, we revealed problems with the provided tabular data processing

pipeline, where features were processed in a way that introduced a lot of noise to the data. The

top-most important features for the tabular model support this finding, as the value deemed most

vital by medical doctors for a graft loss prediction - creatinine - cannot be found in the list of most

important features for the tabular model. Investigating a single example of a misclassified patient

revealed that the small size of the dataset has its limits when splitting, as the distribution of the

age feature is missing an equal amount of ages and failure patients in some age ranges. Examining

the provided text corpus, we were able to highlight that the text requires intensive cleaning to

provide a suitable representation. To achieve this representation, we took several steps, most

notably expanding abbreviations, cleaning words unknown to BERT and removing text that was

not contributing any valuable information.

Limitations Each project has its limitations mostly to the factor of time. To find the right balancing

technique a multitude of methods have been evaluated, to keep the expedition of methods within

scope we used uniform hyperparameter for all the methods. Some of the methods might suffer

from this choice, thus not delivering accurate results.

Concluding the error analysis we found flaws that add a reasonable amount of noise to the tabular

data. Furthermore, we found unwanted characters in T-Base, which might be part of a bug we
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were not able to investigate.

We further observed a drop of recall from text-iteration-one to two model, but were unable to

investigate the cause of this drop, due to time limitations. Moreover, we were unable to combine

the iteration-two-pretrained-text model with our ensemble model, so that we are unable to state if

the text-iteration-two model will improve the performance of the ensemble model. This serves as

a point of entry for future research.

Résumé Given the flaws found in the tabular model and the rudimentary approach of abbreviation

expansion not taking the context of the abbreviation into account and further not having imple-

mented the fine-tuned text model on the ensemble model, we believe that this model still holds a

lot of untapped potential. In addition, the dataset will grow over time, as new patients will, unfor-

tunately, be included in the database and offer a better distribution of classes and features. Even

though we were able to prove our hypothesis and increase the prediction, there is still room for

7.1 Future outlook

Future improvements can be made in many areas but three sectors come to mind first and foremost:

data engineering tasks, improvement of data quality and the continued search for a better model

architecture. The tasks we deem the easiest to implement or the most essential to make further

progress on the project can be found under short-term improvement. The mid-range improvements

should be conducted after the conclusion of the short-term improvements. However, those are

tasks which we think will have the most impact and need the least amount of time. Long-term

improvements are tasks that could not be easily managed during the course of one thesis. In the

backlog, a handful of interesting references can be found, which could be tried out, but we believe

that they will lead to equal results.

Short-term improvement An easily implemented improvement would be to upgrade the ensem-

ble model with the fine-tuned text model. This will increase the F1 score by approximately 2-3%.

An investigation of the oversampling techniques with suitable hyperparameters could also bring

further insight which might help create a better model. The infrastructure to achieve this is already

implemented in our code-base. A rather long but absolutely necessary step before proceeding with

anything related to the tabular data is the abolishment of all the bugs found in the data preparation

pipeline.

Furthermore, to modernise the fine-tuning approach, a different risk definition was proposed to

us by a medical doctor during the project: the Akain definition for diagnosing AKIs. [87] Addi-

tionally, neglecting the time factor for the classifications of an AKI by the RIFLE definition was

recommend to us. The produced labels should also be used as an input feature for the tabular

model.

An investigation of the sudden drop of recall from text iteration one to two might reveal further

insight into the bias of the text data and should thus be conducted. Another investigation should

be conducted on the five failure patients who were misclassified by the iteration two text models.

Lastly, we took patients’ text data that appeared prior to a transplant. Our investigation of the
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text ablation study showed that, if a patient had had two transplants, the text of the first transplant

would contribute to the wrong class. Thus, a time limit needs to be defined to limit how much

pre-transplant text should be included for a prediction.

Mid-Range improvement As tabular and text data are combined in this thesis, another dimension

of data can be added to the prediction - time. Implementing this parameter can be achieved by

using an LSTM or T-LSTM. [88]

Furthermore, our technique of splitting long texts is quite rudimentary, as it just splits the text

every 512 tokens. A better approach would be to use spaCy and split the text in a way that keeps

the number of tokens in a batch as high as possible, while also respecting its grammatical structure.

The ensemble approach is quite successful and can be applied to other structures of the project. As

each Untersuchungs text belongs to a category, an NLP model for each of the 4-5 largest categories

could be trained which generates new text embeddings combining all of those models.

As we were conducting this project, a new German BERT model was released. GottBERT, as it is

called, looks promising and should also be evaluated. [89]

Long-term improvement The most important goal for the medical sector in the next few years

should be to build a common data platform for all hospitals in Germany. Moreover, UIs should be

generated that try to standardise the input of the data for tabular data. For text data, it is necessary

to at least have a recommendation engine that makes suggestions so that the collected text becomes

more uniform. Lastly, a German BERT, or whichever will be the language model of the future,

will need to be created which is fully capable of understanding and working with German medical

domain text.

Backlog

• Dice loss and dice coefficient [90]

• MCC as loss function [91]

• Constrastive loss n-shot model [92]

• FLANNEL Ensemble Model [70]

• Ensemble Tree Layer [93]

• Other Risk Factors for Fine-Tuning [94]
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Appendex

Regular Expressions Variables

Street names Telephone numbers

Zeile Telefon
Weg Tel
Strasse Tel\
Straße Tel\.
str\ Tel\.-Nr\.
str Telefonnummer
Chaussee Fax
Ring Telefax
Damm
Feld
Platz
Allee
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Physicians choice of features to predict graft Loss

Physician 1 Physician 2 Physician 3

Receiver Age State of Donor Primary Kidney Function
Years between first Dialysis and Transplant Dialysis needed after Transplant Dialysis needed after Transplant
Creatinine Daily Protein Donor Alive
Protein Concentration Primary Kidney Function Years between first Dialysis and Transplant
Banff MM Board Donor Degree of Kinship
Diagnoses Heath-Insufficiency Banff Age Receiver
Receiver Medication Creatinine MM Board
Type of Dialysis Diagnosis Sepsis Ischemia Cold of Kidney
State of Donor CRP Receiver Weight
Primary Kidney Function Receiver Medication Donor Age

Physician 4 Physician 5

Banff Donor Age
Creatinine Creatinine
ProteinTUR Daily Protein
Daily Protein Donor Alive
Receiver Blood pressure systole Donor Age
Receiver Blood pressure diastolic MM Board
Receiver Medication Banff
Diagnosis Sepsis CRP
Diagnosis Hypovolemia Diagnosis Myocardial Infarction
MM Board Diagnosis Sepsis
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