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Abstract Deciding on a patient treatment strategy is complicated, as medical
doctors only have limited time to make decisions, and the amount of known dis-
eases, drugs, and treatments is vast and rapidly growing every day. The thesis
aims to find an effective model for predicting prescribed drugs from clinical notes to
support medical doctors with patient treatment strategy development. Therefore,
we compare the Transformer based BERT Classifier by Devlin et al.| ((2019)) and
Bi-Encoder by Humeau et al.| ((2020)). For the Bi-Encoder architecture, we added a
general description of the prescribed drug from Wikipedia. Additionally, we propose
a medication prediction task based on MIMIC-III by [Johnson et al. ((2016))), the
admission note dataset by van Aken et al|((2021)) and Wikipedia and evaluate all
proposed models on this task. Furthermore, we proposed a Wikipedia medication
dataset that we linked to MIMIC-ITI. We found that including rarely used drugs in
the training of our models does not hurt performance as much as expected. Addi-
tionally, we showed that adding additional information about the prescribed drugs
from Wikipedia does not seem to increase prediction performance.

Zusammenfassung Sich fiir eine Behandlungsstrategie zu entscheiden ist kom-
pliziert, da Mediziner meist nur begrenzt Zeit haben, um Entscheidungen zu treffen
und die Menge an bekannten Krankheiten, Medikamenten und Behandlungen grof3
ist und taglich wachst. Das Ziel dieser Bachelorarbeit ist es, ein Model zu finden,
welches in der Lage ist verschriebene Medikamente mithilfe der Aufnahmedoku-
menten in einer Klinik, vorherzusagen. Dafiir haben wir das Transformer basierte
BERT Model von Devlin et al.| ((2019))) und das Bi-Encoder Model von Humeau et al.
((2020)) miteinander verglichen. Bei dem Bi-Encoder Model haben wir zuséitzlich
eine allgemeine Beschreibung des Medikaments von Wikipedia hinzugefiigt. Aufler-
dem schlagen wir einen Datensatz vor, anhand dessen sich die Qualitat der Vorher-
sagen messen lasst. Dieser Datensatz wiirde mithilfe der MIMIC-III Datenbank von
Johnson et al. ((2016))), dem Admission Note Datensatz von van Aken et al. ((2021)))
und Wikipedia erstellt. Des Weiteren schlagen wir einen Wikipedia Medikamenten-
datensatz vor, welchen wir mit MIMIC-III verkniipft haben. Wir haben herausge-
funden, dass das Einbeziehen von selten verwendeten Medikamenten beim Training
unsere vorgeschlagenen Modelle die Vorhersagequalitat nicht so stark verschlechtert
wie erwartet. Zudem haben wir auch herausgefunden, dass das Hinzufiigen von
zusatzlicher Information tiber die verschriebene Medikamente von Wikipedia die
Vorhersagequalitat nicht zu erhohen scheint.
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Chapter 1

Introduction

Developing effective patient treatment strategies is a complex process, and medi-
cal doctors only have limited time to make decisions. Also, the amount of known
diseases, drugs, and treatments is vast and rapidly growing every day. We want to
propose multiple models which can support doctors with clinical decision-making by
suggesting drugs they may not have considered. Like medication prediction, clinical
outcome prediction is one part of clinical decision-making. Additionally, medication
prediction and outcome prediction have similar inputs. Therefore, clinical outcome
prediction is closely related to medication prediction. We were motivated to work
on medication prediction because advances in outcome prediction have shown signif-
icant progress recently. Especially the usage of clinical notes is of particular interest
for us. Natural Language Processing also showed substantial improvements over the
years for different tasks. We are especially interested in transformer-based models
as they have outperformed the previous state-of-the-art models based on Recurrent
neural networks. Additionally, we are interested in adding information on prescribed
drugs as textual drug descriptions and how this could refine prediction performance.

1.1 Problem Statement

Medical personal has to consider many different factors when deciding which patient
treatment strategy to pursue. Additionally, they only have limited time to make
decisions, and the amount of known diseases, drugs, and treatments is vast and
rapidly growing. Automated systems can quickly search a massive amount of data
and suggest drugs that medical doctors might not have considered. Therefore we
want to present our approach to medication prediction.

For medication prediction, we try to predict the drugs prescribed during an
admission from the admission notes. This model should provide tips for possible
medication medical doctors might not have considered. If combined with outcome
prediction, it can create a system that could support medical doctors with developing
patient treatment and clinical resource planning.

But this is hard because medical professionals frequently use a lot of specialized
vocabulary. Additionally, some drugs are infrequently used because they have a very
specialized use. Therefore, examples of the usage of these drugs are limited.



1.2 Hypothesis

Devlin et al. ((2019)) introduced new transformer-based models like BERT, which
they trained on a general text corpus, and which we can fine-tune to a variety of
tasks. Additionally, a variant of BERT was proposed with the name BioBERT by
Lee et al| ((2019)) which they trained on biomedical domain corpora. They have
shown that they perform well on a variety of tasks. Therefore, we expect them to
perform well on this task, that adding information on prescribed drugs should boost
prediction performance and that it should be harder to predict rarely used drugs.

1.3 Methodology

1.3.1 Neural Network Architectures

We evaluated two neural network architectures. First, we chose a classification
approach as our baseline, which is based on BERT by [Devlin et al| ((2019))). Addi-
tionally, we decided pointwise learning to rank approach based on the Bi-Encoder
by Humeau et al.| ((2020)) with BERT-based encoders. This architecture allows us
to add additional information about the drugs.

1.3.2 Evaluation Tasks

We propose a medication prediction task, which takes a textual patient representa-
tion as admission notes and predicts the drugs prescribed during the admission. We
evaluated all proposed architectures on this task.

1.3.3 Training- and Evaluation Datasets

We created new datasets based on the MIMIC-III database by |[Johnson et al.
((2016))), the admission note dataset by van Aken et al| ((2021))) and Wikipedia
for training and evaluation. Also, we created a Wikipedia medication dataset and

linked it to MIMIC-III.

1.4 Outline

In [chapter 2| we go through the foundations of the different neural network archi-
tectures used in this thesis. Furthermore, we present previous work on outcome
prediction and medication prediction. In we define the medication pre-
diction task we want to solve, present the data we use and how we preprocess it, and
present the different approaches we employ to solve the defined task. In[chapter 4]
we go through our data processing pipeline and explain our experimental setup.
Moreover, we show our hyperparameter tuning setup and which and how we tune
our hyperparameters. In [chapter 5 we present our hypothesis, evaluation metrics,
results, and findings. Finally, in [chapter 6] we summarize our results and findings
and offer perspectives for future work.



1.5 Summary

In this chapter, we highlighted how medication prediction could help medical doctors
with patient treatment strategy development. Additionally, we showed the problem
currently associated with it: a specialized vocabulary in the medical domain and
limited data of rarely used drugs and how we try to solve them. Moreover, we pre-
sented our methodology of how to develop an effective medication prediction model.
Therefore, we introduced the different neural network architectures we employ, the
evaluation task we use, and how we compose our training- and evaluation datasets.
Finally, we gave an overview of the structure of the thesis.



Chapter 2

Background

2.1 Introduction

In this chapter, we will explain the underlying concepts of this work. These Concepts
include the BERT model and the foundational concepts like the Attention mecha-
nism and the transformer architecture. We will then continue with the Bi-Encoder
and the background of the MISH activation function. After that, we present the
strongly related outcome prediction task and discuss the previous progress in the
medication prediction task.

2.2 Attention

Graves et al| ((2014)) first introduces the Attention mechanism. A basic Attention
cell has three inputs(query, key, and value) and one output. All the inputs and
outputs are vectors. The idea behind the Attention mechanism is as the names of
the inputs imply a key-value store. There are two parts to the attention mechanism
the compatibility function and a weighted sum. The compatibility function extracts
how well each query vector matches each key vector. This matching is expressed as
weights by which a weighted sum extracts the final output from the value vector.
We could also think of the compatibility function as a measure of the amount of
attention the model wants to pay to a specific value.
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Figure 2.1: Scaled Dot Product Attention, Source: [Vaswani et al. ((2017))

2.2.1 Scaled-Dot-Product-Attention

Vaswani et al.| ((2017)) first introduces the scaled dot product attention. The scaled
dot product attention is an implementation of the attention mechanism.
shows how the cell works. They formulate the mechanism the following:

. QKT
Attention(Q, K, V) = softmax(———=)V (2.1)

Vi
@, K, and V| respectively, refer to the query key and value input. Multiple keys,
values, and queries can be processed at once as a matrix in parallel. dj refers to

the length of the key vectors. They divide QKT by +/dj to increase the numeric

T
stability of the Softmax function. so ftmaa:(%) is the similarity function of the

T
attention implementation while the the dot-product between so ftmax(%) and V

represents the weighted sum.

2.2.2 Self-Attention

Vaswani et al.|((2017)) first introduces the Self Attention mechanism. Self Attention
takes a basic attention cell and inputs the same vector as query, key, and value. This
trick allows the parallel evaluation of sequences without using Reccurrent neural
networks (RNNs), which are only able to process sequences sequentially. Then, the
compatibility function outputs a matrix representing the relationships of the vectors
in the sequence to each other.
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Figure 2.2: Multi Head Attention, Source: Vaswani et al.| ((2017))

2.2.3 Multi-Head-Attention

Vaswani et al.| ((2017)) first introduces the multi-head attention mechanism. Like
the scaled dot product attention, it is an implementation of the attention concept.
This approach uses multiple attention cells, which are called heads. As shown in
the query, key, and value vector are passed through a linear layer, then
split into h parts, where h represents the number of attention heads, and each
attention head gets assigned a slice of the input. Then, each attention head processes
its corresponding slice of the input vectors. Finally, the attention heads outputs are
concatenated and passed through another linear layer.

2.3 Transformer

The Transformer is a sequence-to-sequence model from Vaswani et al.| ((2017)).
This model uses self-attention instead of RNNs layers. This approach avoids the
sequential nature of RNNs and is, therefore, better suited for training on today’s
parallel Compute Accelerators. Transformers-based model often outperform RNN
based approaches. [Vaswani et al. ((2017))) use scaled dot product multi-head self-
attention as attention implementation.
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Figure 2.4: Bert Embedding, Source: Devlin et al.| ((2019)))

2.4 BERT

BERT, first introduced by Devlin et al. ((2019)), stands for Bidirectional Encoder
Representation from Transformers. This model provides a language representation,
which we can adapt for different tasks. At the core of the model, they stack multiple
transformer encoder layers on top of each other.

Figure shows how the transformer encoder works. The encoder is
composed of 2 layers, the scaled dot product multi-head self-attention mentioned in
the Transformer section and a fully connected feed-forward layer. Both layers have
a residual connection and layer normalization.

Before they pass the input sentence through the encoders, it is embedded.
show how they do it. The final embedding comprises three embeddings, a
token embedding, a segment embedding, and a position embedding. The token em-
bedding encodes the token, the segment embedding encodes the sentence the token
is in, and the position embedding encodes the token’s position in the input sequence.
The result is the sum of all three vectors.

They separate the training process into two parts the pretraining and fine-tuning.
First, the model’s pretraining is done on general text to generate a broad under-
standing of language. BERT uses the masked-language model and next-sentence-
prediction tasks for pretraining, which we describe below. The advantage of both
training methods is that we can generate the training data from a monolingual cor-
pus. Second, for fine-tuning, the pre-trained model is adapted to a specific task.
They showed that fine-tuning a pre-trained model only takes a few hours on a GPU.

They provide Pretrained models in 2 configurations, BERT base with 12 stacked
encoder layers, embedding size of 768 and 12 attention heads per encoder layer, and
BERT large with 24 encoder layers, embedding size of 1024 and 16 attention heads.



2.4.1 Masked Language Model

The mask language model task takes a sentence and masks some percentage of words
at random. Then, the model tries to predict the masked words. In particular, they
mask 15% of the words for BERT. For that, they replace 80% of the words with a
unique mask token, replace 10% with a random token, and not replace 10%. They
do not replace all the words with the mask token because most fine-tuning tasks
will probably not use the mask token.

2.4.2 Next sentence prediction

In This task, they show the model two sentences, and the model tries to predict
if the second sentence follows the first. For BERT, 50% of the pairs, the second
sentence follows the first, while for the other 50%, the second is a random sentence
from the corpus.

2.4.3 BioBERT

We will use a BERT model, which is pre-trained on biomedical domain corpora. This
model is called BioBERT, was introduced by Lee et al.| ((2019)) and uses the same
hyperparameters as Bert base. They showed that they could deliver state-of-the-art
performance in biomedical tasks.
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Figure 2.5: Bi-Encoder, Source: Humeau et al. ((2020))

2.5 Bi-Encoder

The Bi-Encoder architecture by Humeau et al. ((2020)) uses two encoders, a context
encoder, and a candidate encoder. The idea is that the training transforms the em-
beddings of both encoders such that a context vector is near its relevant candidates
in latent space. shows how the Bi-Encoder works. There is a context and
a candidate encoder, which process the contexts and the candidates, respectively.
If the encoder outputs multiple vectors, an aggregator should reduce the output
of each encoder to one vector. Then they pass both vectors through a similarity
measure to obtain the final score. The similarity measure at the top should extract
the relevance of a given candidate for a given context. For example, we could use
cosine or dot product similarity as the similarity measure.

2.6 MISH

MISH, first introduced by |Misra/ ((2019)), is a self-regularized non-monotonic activa-
tion function. Furthermore, the SWISH activation function inspires them in the cre-
ation of this activation function. SWISH was first proposed by Ramachandran et al.
((2017)) it was found by Neural Architecture search on the CIFRA-10(Krizhevsky
((2009))) classification task using ResNet-20(He et al.| ((2016]))). They found that
MISH outperforms SWISH on various tasks. Furthermore, [Eger et al.| ((2018]))
showed that SWISH also performs well in NLP tasks. Therefore, we expect MISH
to perform better on our task than other more widely used activation functions. We
use MISH as an activation function for the Encoders of the Bi-Encoder, which we
explain in the following chapters in greater detail. Misra ((2019))) define MISH as
the following Function:

f(z) = x - tanh(softplus(x)) = x - tanh(In(1 + €%)) (2.2)

9



2.7 Clinical Outcome Prediction

Clinical Outcome Prediction describes a range of tasks where someone takes a rep-
resentation in some form of a patient and predicts specific properties of clinical
care for this patient. Most approaches filter out direct information about the pre-
dicted properties. Additionally, Medication prediction is strongly related to clinical
outcome prediction as both use a patient representation as input.

This thesis is based on the paper by van Aken et al. ((2021))). The main goal
of this paper is to help medical professionals consider possible risks and support
hospitals with planning capacities. They propose a textual patient representation
which is created by admission notes from the MIMIC-IIIT database by |Johnson et al.
((2016)). We explain MIMIC-IIT further in and the generation of the admission
note dataset in [3.4.2] These admission notes only contain information that medical
professionals know at the time of admission. Therefore, we are not able to extract
specific properties of clinical care from the patient representation.

We will go over common clinical outcome prediction tasks in the following sec-
tions. These tasks were manly taken from [van Aken et al[((2021)) and Zhang et al.
((2020)).

2.7.1 Diagnosis and Procedure prediction

The goal of diagnosis and procedure prediction is to predict possible diagnoses and
procedures respectively for a patient. Both diagnosis and procedure are most times
encoded as International Statistical Classification of Diseases and Related Health
Problems (ICD) codes. Because of the hierarchical nature of ICD codes, most ap-
proaches group the codes to reduce the already huge amount of classes. We could
view The diagnosis and procedure prediction tasks as separate tasks, but most ap-
proaches solve both tasks simultaneously because of the similarity of the output.
Solutions to this task are proposed by Mullenbach et al. ((2018)), Hu and Teng
((2021)), [van Aken et al|((2021)) and (Choi et al.| ((2016)).

2.7.2 In-hospital mortality prediction

The goal of in-hospital mortality prediction is to predict the probability of a patient’s
death during admission. Most approaches treat this task as a binary classification
task and filter out terms regarding mortality from the patient representation. So-
lutions to this task are proposed by Deznabi et al.| ((2021))), Hashir and Sawhney
((2020)), [van Aken et al|((2021)) and Zhang et al.| ((2020))

2.7.3 Length-of-stay prediction

The goal of in length-of-stay prediction is to predict the duration of a patient’s
admission. Depending on the approach, they represent the length of stay in another
way. For example, van Aken et al. ((2021))) group length-of-stay into four categories:
Under three days, 3-7 days, 1-2 weeks, more than two weeks. These categories were
recommended to them by medical doctors. On the other hand, the approach of
Zhang et al. ((2020))) treats the task as a binary classification problem with one
class representing length-of-stay of up to seven days and the other of over seven
days.

10



2.7.4 Hospital readmission prediction

The goal of hospital readmission prediction is to predict the probability of readmis-
sion. Most approaches classify admission as readmission if it happens no more than
30 days after a previous discharge. Additionally, most approaches treat this task
as a binary classification task. Solutions to this task are proposed by [Huang et al.
((2019)), |Golmaei and Luo| ((2021)) and Zhang et al. ((2020)).

2.8 Medication prediction

For medication prediction, we try to predict the medication during an admission
from a textual patient representation as an admission note. As mentioned in
medication prediction is strongly related to clinical outcome prediction as both use
a patient representation as input. Therefore, we will use the admission note dataset
from van Aken et al| ((2021)). Although clinical outcome prediction has a solid
foundation in literature, medication prediction in the form we practice it in this
thesis has not. Therefore, we will present literature that is related but solve another
task in the following section.

One approach is to predict effective drugs for cancer treatment using neural
networks. They take properties of the cancer cell lines like metabolism or DNA
to predict effective drugs. Solutions to this task are proposed by Baptista et al.
((2020)) and Kim et al|((2020)). Although this approach presents a way of finding
a solution to effective cancer treatment using neural networks, it is limited to cancer.

Another approach is to predict the effects and side effects of drugs using neural
networks. The representation of the drug is dependent on the approach, for example,
textual description or chemical structure of the drug. Solutions to this task are
proposed by [Jang et al. ((2018)) and Wu et al. ((2019)). Although this approach
presents a way of effectively predicting drug effects, we have to extract patient
information to search a database annotated with this data effectively.

A further approach is to predict prescriptions from previous clinical events using
neural networks. They usually represent an admission of a patient as a sequence
of events. These clinical events are most times encodes as ICD codes. Solutions to
this task are proposed by [Choi et al. ((2016])), Liu et al. ((2020))) and Song et al.
((2021))). The problem is that this approach disregards patient-specific information
like gender or age and is only applicable if a Electronic health record (EHR) in the
appropriate format exists.

11



2.9 Summary

This chapter first presented the background and related work about the models
used in this thesis. Therefore, we show that key-value stores inspire the attention
mechanism, a concept in neural networks. Furthermore, We presented the inner
workings of the scaled dot attention, the multi-head attention, and self-attention,
which are the foundational concepts of the Transformer architecture. Additionally,
we showed how BERT by [Devlin et al.| ((2019)) leverages the underlying concepts
of Transformer architecture to create the state-of-the-art model for solving multiple
NLP tasks effectively and how [Lee et al. ((2019)) created the BioBERT model
variant. Moreover, we presented the Bi-Encoder concept by [Humeau et al.| ((2020))
and the MISH function and why we use it.

After that, we went through the previous related work of the strongly related
outcome prediction. Then, we summarized the tasks that are usually associated with
outcome prediction: diagnosis, procedure, in-hospital mortality, length-of-stay, and
hospital readmission prediction, and reference works that proposed solutions to this
task. Likewise, we briefly defined medication prediction and showed the relatedness
of our task to clinical outcome prediction. In addition, we showed related approaches
which solve related tasks, as previous work does not propose a solution to the task
we defined.

12



Chapter 3

Methodology

3.1 Introduction

In this chapter, we focus on the methods we applied and developed for this thesis.
First, we will define the medication prediction task. After that, we present the
learning-to-rank concept. Afterward, we present the different data sources we used
and how they are composed. Then we go over the different approaches we take to
solve the problem. Finally, we present the concept behind the different loss functions
we use.

3.2 Task Definition

In the medication prediction task, we try to predict the medication from a repre-
sentation of a patient. This representation may involve natural language, images,
or both. The images may contain the patient or parts of the patient. The text
may describe the patient’s symptoms, medical history, previous medication, aller-
gies, family or social history. The medication’s prediction may contain information
on the medication’s active ingredients, form, dose, and route. The active ingredient
is the ingredient that is responsible for the primary health effect of a drug. This
ingredient could also cause secondary effects. The form describes the delivery form
of a drug like a tablet or injection. Also, The dose details the amount of the drug’s
active ingredient per intake. Further, The route depicts the delivery method of a
drug like oral or infusion.

We wanted to use a task setup that is easy to create data for and is compatible
with previous approaches. Therefore, we used clinical notes from doctor letters
from hospital admissions. Furthermore, we focused on the active ingredient for the
prediction of the medication. While other information like the dose could also affect
the effect of a drug, we omitted these because it would make the prediction more
complex in most cases.
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3.3 Learning to rank

Learning to rank refers to a technic where neural network models rank search results,
depending on the relevance. This goal could be archived independent or dependent
on a user’s query. This query could also contain information on the user’s prefer-
ences. For example, a Programmer might search for the command line tool ”cat”
and not for the animal. Common approaches are pointwise, pairwise, and listwise
learning to rank.

3.3.1 Pointwise learning to rank

Pointwise learning to rank calculates a score for an input document and optionally
query. For example, someone could archive this goal by optimizing a function f(d, q)
where d refers to the document to rank, and ¢ refers to the query. The user obtains
the final result by sorting the list of documents by the calculated score.

3.3.2 Pairwise learning to rank

Pairwise learning to rank takes two documents plus optionally a query and returns
which document ranks higher. This approach turns the problem into a binary classi-
fication problem. This could be archived by optimizing a function f(d,, dy, q) where
d, and d, refers to the documents and q refers to the query. This approach can yield
contradictory results like A is better than B, B is better than C, and C is better
than A. The user obtains the final result by using this function as a comparator
function in a sorting algorithm.

3.3.3 Listwise learning to rank

Listwise learning to rank takes the list of documents and optionally a query to and
returns the final order of the documents. This could be archived by optimizing a
function f,(D, q) where D = {d;,ds, ..., d,} refers to the list of documents to rank
and ¢ to the query. The user obtains the final result by transforming the documents
list in the model suggested order.
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Figure 3.1: Admissions per durg
3.4 Data

3.4.1 MIMIC-III

Johnson et al.| ((2016))) proposed the MIMIC-III v1.4 dataset. They say, "MIMIC-
II1 is a large, freely-available database comprising deidentified health-related data
associated with over forty thousand patients who stayed in critical care units of
the Beth Israel Deaconess Medical Center between 2001 and 2012”7 (Johnson et al.
((2016)).

We used the prescription table to obtain the prescribed medication. The pre-
scription table contains information like the drug, form, dose, amount, and route.
There is also a representation of the drug in various coding systems like Generic
Sequence Number (GSN) or National Drug Code (NDC). Both are identifiers rep-
resented by a number that uniquely identifies a combination of ingredient, strength,
form, and route. The NDC is also composed of a labeler code (4-6 digits), a prod-
uct code (3-4 digits), and a package code (1-2 digits). There is a notation where
dashes separate the different parts, but this separation does not exist in MIMIC.
Therefore, splitting the different parts is not trivial for MIMIC. There are 4156450
prescriptions in total in MIMIC-III.

We use the drug column from the prescription table in MIMIC-III as the target
of our prediction. The advantage of using this column is that the creators of MIMIC-
IIT marked it as not null and consequently filled every row with data. [Figure 3.1
shows the number of admissions per drug. The drugs are on the x-axis, and the
y-axis how many admissions use a specific drug. We sorted the drugs on the x-axis
by the amount admissions using a specific drug. As we can see, the data is long-tail.
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3.4.2 Admission Notes

We used the Admission Note dataset proposed by [van Aken et al. ((2021)). They
created the data from discharge notes. Then, they split the discharge notes into
sections with simple pattern matching. After that, they reviewed the section titles
with medical doctors to only select sections which contain information known at
admission. These sections include Chief complaint, (History of) Present illness,
Medical history, Admission Medications, Allergies, Physical exam, Family history
and Social history. Afterward, they filtered the discharge notes to only include
these sections. They also make sure to filter out notes from newborns and removed
duplicates. There are 48745 admission notes in total in the dataset. We split the
dataset randomly into 3 parts train(70%), test(20%) and validation(10%). The
following box shows an example admission note from a fictional person:

CHIEF COMPLAINT: Headaches

PRESENT ILLNESS: 58yo man w/ hx of hypertension, AFib on coumadin presented to ED
with the worst headache of his life. Brother reports states that patient has
been complaining of headache for 2 days and that the patient has lost
consciousness. He had a syncopal episode and was intubated by EMS.

MEDICATION ON ADMISSION: 1mg IV ativan x 1, metformin

PHYSICAL EXAM: Vitals: P: 92 R: 14 BP: 151/78 Sa02: 99\’ intubated. Cardiac: RRR.
GCS E: 3 V:2 M:5 HEENT: atraumatic, normocephalic Pupils: 4-3mm. Abd: Soft,
BS+ Extrem: Warm and well-perfused.

FAMILY HISTORY: Mother had stroke at age 82. Father unknown.

SOCIAL HISTORY: Lives with wife. 25py. No EtOH

3.4.3 Wikipedia

We used Wikipedia as a source for descriptions of drugs. Therefore, we use a
Wikipedia dump. There are 5676817 articles and 27818908 sections in Wikipedia.
Furthermore, we use the introduction section as it is present in every Wikipedia
document and summarizes its content well. Using the summarized version of the
document is favorable because the quadratic memory requirement of the attention
mechanism limits the amount of text that we can process at a time with BERT.

3.4.4 Trigram Fuzzy Matching

To use Wikipedia as our source of descriptions, we have to match Wikipedia docu-
ments to prescriptions. We tried creating a mapping from one of the coding system
representations provided by MIMIC to Wikipedia using Wikidata, but we have not
found a mapping that yielded satisfactory results. Therefore, we used fuzzy Trigram
matching to match Wikipedia titles to drug names.
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Figure 3.2: Statistics of the linked data

The matching works with a similarity function. This similarity function takes two
inputs and returns how well the input values match by outputting a value between
0 (not matching) and 1 (identical). Therefore, the algorithm splits the input values
into a set of Trigrams. A Trigram is a string containing three characters. The
algorithm expresses the split input as a vector. Each dimension of the vector is
assigned one of the possible Trigrams. For example, if our alphabet has 26 letters, the
vector has 262 dimensions. For each Trigram in the input, we set the corresponding
dimension in the output vector to 1 while the remaining stay 0. Finally, We obtain
the similarity by taking the cosine similarity between the two vectors.

We found that similarity of 0.8 provides a good enough matching while linking
as many drugs as possible. Therefore, we were able to match 1390 from 4430 or
approximately 31%. shows the number of admissions per Wikipedia
article of the drugs used. On the x-axis are the articles, and on the y-axis, the number
of admissions. We sort the articles on the x-axis by the number of admissions. As we
can see, this data is also long-tail. shows the number of admissions per
drug, which we could not link to a Wikipedia article. On the x-axis are the drugs,
and on the y-axis, the number of admissions. We sort the drugs by the number of
admissions. As we can see, we could not resolve some of the most used drugs.

We could not link some drugs because they are not widely known, and there is no
Wikipedia article. However, this does not explain why some of the most used drugs
are not linked. Looking into the set of unlinked drugs, we discover that drugs named
by acronyms, like Intravenous sugar solution (D5W), could not be disambiguated
by our method. The Wikipedia search could disambiguate these acronyms because
they use redirection pages for synonyms and acronyms of a topic. Unfortunately,
our dataset does not contain the redirects. Furthermore, some drugs point to dis-
ambiguation pages. Wikipedia uses these disambiguation pages if multiple topics
share the same name or acronym. In this case, the description of the drug contains
the introduction of the disambiguation page, which is a short sentence like, ” X may
refer to:” or ”X as an abbreviation can mean:”.
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3.5 Approaches

3.5.1 Classification

In the classification approach, we take an admission note as input. The output is
a vector where every dimension corresponds to a prescribable drug. This approach
limits the number of drugs we can predict, and we have to retrain the model every
time we want to add new drugs. Nevertheless, this model should provide a baseline
for the following models.

We use a pre-trained BioBERT model(Lee et al.|((2019))), which we fine-tune in
classification configuration like described by [Devlin et al.| ((2019)). First, we used
the word piece tokenizer to tokenize the admission note text. Then, We prepend the
tokenized sequence with the [CLS] token and separate the sentences with the [SEP]
token. For example, an input could look like this: [CLS] my dog is cute [SEP] he
likes play ##ing [SEP] We then take the output from the [CLS] token from BERT
and pass it through a classification head to obtain the prediction.

The classification head consists of a linear layer with sigmoid activation. Then,
we use binary cross-entropy loss to obtain the loss for the model. Additionally, we
combine the sigmoid activation and binary cross-entropy for better numeric stability
while training. The range of the output values depends on the type. While the sig-
moid activated output has values between 0.0 (not prescribed) and 1.0 (prescribed),
the raw model output(logits) is not restricted in any way.

We train two versions of the model, one where we infer the classes from the drug
column of the prescription table in MIMIC-IIT and one where we infer the classes
from the linked Wikipedia articles of the prescribed drugs using trigram matching,
which should result in a model which could be compared more easily with the Bi-
Encoder approach. For simplicity, we will continue calling the first drug classifier
and the second article classifier.

To combat the long tail mentioned in [Figure 3.1| and [Figure 3.2al we limit the
classes of the drug classifier top 1000 most prescribed drugs and the article classifier
to the top 200 most used Wikipedia articles in regards to the linked admission.
We also trained versions that do not limit the classes to measure the performance
impact of including the long-tail.
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3.5.2 Bi-Encoder

In the Bi-Encoder Approach, we think of the problem as a ranking problem. Just
like the classification, we take an admission note as input. Additionally, we have a
collection of descriptions of drugs. With the Bi-Encoder, we then rank the admission
note with this collection of descriptions. The output is a vector where each dimension
corresponds to the drug description, with the value representing the relevance of the
description to the admission note. The advantage of this approach is that we do
not have to retrain the model every time we want to add new drugs. Therefore, the
Bi-Encoder could be described as a pointwise ranking approach.

We process the encoder input like in the classification approach. Furthermore,
We use BERT with a feedforward on the output of the [CLS]| token as encoder and
dot product similarity as similarity metric.

For training, we assembled batches by taking an admission note and randomly
selecting the description of the prescribed drug. Then, We encode the admission
notes and the drug descriptions and calculate the similarity of each encoded admis-
sion note and prescribed drug using the Bi-Encoders similarity measure. After that,
we use two methods to calculate the loss of our model. First, we use single-label loss
(cross-entropy with softmax activation) where for one admission note, the model
should only predict the corresponding selected drug. We expressed this with a diag-
onal matrix. However, a selected drug might also be relevant for another admission
note, which introduces noise with this setup. Therefore, the second method used
multi-label loss (binary cross-entropy with sigmoid activation) where for one admis-
sion note, the model should predict all relevant drugs in the batch. We expressed
this by a matrix where every cell is set to 1 if the corresponding drug is relevant for
the corresponding admission note and 0 if the previous does not apply. We found
that the second approach performs much better than the first.

As for the Bi-Encoder, we limit the number of descriptions to the 200 descrip-
tions, which are used in most admissions to combat the log tail mentioned in
and 3.4.4 We also trained a version where we do not limit the amount classes to
show how the approaches perform with and without the long-tail.

We filtered out admission notes that only use drugs that we can not link to
Wikipedia articles because the training does not represent them. As a result, we
filter out 3878 of 48745 or approximately 8% of the admission notes.

3.6 Loss functions

We mentioned two loss functions in the previous sections cross-entropy and bi-
nary cross-entropy. We describe the signature of the cross-entropy function as
ce(pred, target) and the signature of the binary cross-entropy function as bee(pred, target).
The pred parameter describes the model output, while the target parameter de-
scribes what the model should predict. Both parameters are vectors containing a
dimension for each class. The pred vector contains values between 0.0 and 1.0, where
higher values correspond to a higher probability of a class being present. The target
vector contains either 0.0(negative) or 1.0(positive).
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3.6.1 Cross entropy

The following function describes cross-entropy:

ce(pred, target) = — Z target[c] - log(pred|c]) (3.1)
ceC
The C set is a set containing all classes. As mentioned above the target vector
contains either 0.0(negative) or 1.0(positive). Therefore, only predictions of positive
classes can affect the loss. As we use cross-entropy as loss for single-label classifica-
tion, this equation could be simplified as follows:

ce(pred, class) = — log(pred|class]) (3.2)

The class parameter describes the id of the positive class. We combine the cross-
entropy loss with the softmax activation to input prediction values with a range
between 0.0 and 1.0. If we combine the formulas, we get the following result:

ce(pred, class) = — log ( exp(pred[class]) )

> eec €xp(pred|c])

(3.3)
= —pred|class] + log (Z eXP(pred[C]))

ceC

Then, we take the mean to obtain the loss of multiple training samples of a batch.

3.6.2 Binary cross entropy

As mentioned in [3.5.2] the single label loss approach using cross-entropy could in-
troduce noise. Therefore, we use multi-label loss using binary cross-entropy. The
following function describes binary cross-entropy:

bee(p,t) = = > _t[d] - log(p[c]) + (1 — t[d]) - log(1 — p[e]) (3.4)
ceC
As for the cross-entropy, the C set is a set containing all classes. Thus, unlike the
cross-entropy in the binary cross-entropy positive, and negative classes can affect the
loss. Furthermore, we take the mean to obtain the loss of multiple training samples
of a batch.
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3.7 Summary

In this chapter, we first defined the task of medication prediction for this thesis,
where we try to predict the active ingredient of a prescription using a textual patient
representation. After that, we explained learning to rank and divided it into the
pointwise, pairwise, and listwise learning to rank approaches.

Then, we presented the data we use, how it is composed and how we preprocess
it. We used the prescription table’s drug column from MIMIC-III proposed by
Johnson et al. ((2016)) as our source of prescriptions. We showed that the data is
long-tail, meaning a few drugs are used in almost every admission while the majority
only a few times. Additionally, we used the admission note dataset proposed by jvan
Aken et al| ((2021])) as a source for textual patient representations in the form of
admission notes. Furthermore, we used Wikipedia as a source for drug descriptions
and used Trigram fuzzy matching to match Wikipedia titles to drug names and
discussed the implications of this approach.

Afterward, we presented the different approaches we apply to solve the task of
medication prediction. First, we presented a classification approach where we as-
signed each drug a class and fine-tuned a BioBERT model proposed by |Lee et al.
((2019)) to predict the used drugs from an admission note using multi-label clas-
sification proposed by Devlin et al.| ((2019)). Moreover, we used the Bi-Encoder
proposed by [Humeau et al.| ((2020)) architecture as pointwise learning to rank ap-
proach with two BERT-based encoders to rank drugs using their probability of
being used in an admission using an admission note and a drug description from
Wikipedia. Additionally, we proposed a multi-label approach, which promises to
evade noise introduced by the single-label approach. Following that, we explained
the used loss functions, which are cross-entropy and binary cross-entropy.
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Chapter 4

Implementation

4.1 Introduction

In this chapter, we describe the experimental setups for the training of the proposed
architectures. First, we will give insight into the data loading and preprocessing
pipeline. After that, we will describe the experimental setups for the different ap-
proaches. Finally, we will explain the design of the hyperparameter optimization we
run.

4.2 Data Setup

We use Postgres as the database for all the data used. The advantage of this
approach over using the raw Comma Separated Values (CSV) or JSON files is that
the processing and transformation of these files are slow if we implement it in python.
The usual approach is to implement parts of the data processing pipeline in native
code. However, our Experience has shown that it is impossible to shift everything
into native code most time, and the parts that we could not move could severely
impact performance. Therefore, we use Postgres, which the developers completely
implemented in C. Postgres uses SQL as its query language, which is declarative,
meaning that we specify the representation of the data you want to retrieve, saving
on costly transformations on the python side. Furthermore, it is most certainly not
possible to write faster code for the retrieval of some data in the time you write an
SQL query. Nearly every language supports libraries to access Postgres via SQL,
making the SQL-Queries independent of the language used. This approach also
has workflow benefits as the developers build Postgres with Multiuser use in mind.
Data imported could be used by other users, which is beneficial in a research group
setting.

The MIMIC-IIT data(Johnson et al. ((2016))) was available to us in CSV format.
We use the buildmimicﬂ scripts to import the data provided by MIMIC-III into the
database. The Admission note dataset(van Aken et al. ((2021]))) was also available
to us in CSV format. Therefore, we added our scripts to import the admission note
data. The following line describes the SQL commands we use. Note that we will
use the Postgres SQL dialect throughout the thesis you, might need to adapt the
commands if you use another database:

"https://github.com/MIT-LCP/mimic-code/tree/main/mimic-iii/buildmimic
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-- Create admission not table
CREATE TABLE admission_notes
(
ID INT NOT NULL,
TEXT TEXT,
HOSPITAL_EXPIRE_FLAG INT,
CONSTRAINT admission_notes_id_pk PRIMARY KEY (ID)
)

The command above creates the table containing the admission notes. In addition,
it includes an id as primary key, the text of the admission notes, and a hospital
expire flag, which we do not use.

N O Ut WK

-- Import admission note data

\copy ADMISSION_NOTES from ’MP_IN_adm_test.csv’
delimiter ’,’ csv header NULL ’?

\copy ADMISSION_NOTES from ’MP_IN_adm_val.csv’
delimiter ’,’ csv header NULL ’°?

\copy ADMISSION_NOTES from ’MP_IN_adm_train.csv’
delimiter ’,’ csv header NULL ’°

The commands above import the data into the admission note table. We use the
Postgres specific copy function to import the CSV data.

We use SQLAlchemy by Bayer| ((2012))) as ORM to request the data from Post-
gres using SQL. To create our database schema, we use the reflection feature from
SQL alchemy. The following code shows how we do it:

engine = create_engine (connection)

The code above shows how to create an SQLAlchemy engine, which connects to the
database. The connection variable is a string containing the information about the
database driver, username, password, host, and name.

—

metadata = MetaData()
metadata.reflect (bind=engine)

The code above shows how to use the reflection feature from SQLAlchemy to infer
the database’s schema.

=W N

prescriptions = self.metadata.tables["prescriptions"]
admission_notes = self.metadata.tables["admission_notes"]

articles = self.metadata.tables["articles"]
sections = self.metadata.tables["sections"]

The code above shows how we access the tables from the inferred schema.

To import the Wikipedia data, we use an XML Wikipedia database dump, which
we processed and converted to JSON, using Gensim by Rehtifek and Sojkal ((2010)).
Gensim extracts the article title, section titles, and section texts for every Wikipedia
Article. Moreover, we used SqlAlchemy to insert the data into Postgres. Further-
more, we store Wikipedia articles and sections in separate tables instead of joining
the text and storing it inside a row of the articles table. This approach makes it
easier to query certain sections like the introduction section, which becomes useful
later in the thesis. The following code shows how we do it:
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meta = MetaData ()

articles = Table(
"articles", meta,
Column ("id", Integer, primary_key=True),
Column("title", String(300), nullable=False),
)

00~ O Ut W

9| sections = Table(

10 "sections", meta,

11 Column ("id", Integer, primary_key=True),

12 Column("article_id", Integer, ForeignKey("articles.id"), nullable=False),
13 Column ("title", String(3000), nullable=False),

14 Column("text", Text, nullable=False),

151)

17| meta.create_all(engine)

First, we create the new tables using the code shown above.

1| connection = engine.connect ()

Then we connect to the database using the command shown above. We use a
SqlAlchemy connection rather than a session because it allows us to send raw SQL
commands to the database, which we need for later operations such as creating
indexes, creating tables from select statements, and altering tables.

1| segment_and_write_all_articles(
2 wikipedia_path,

3 wikipedia_segment_path

4))

Afterward, we use segment_and_write_all_articles function from Gensim to
extract article titles, section titles and texts. It saves the result of this function as
JavaScript Object Notation (JSON) in a file. The function takes two parameters,
the path to the XML Wikipedia dump and the output file.

1|with utils.open(str(wikipedia_segment_path), "rb") as file:

2 section_id = 0

3

4 for article_id, article in enumerate(map(ujson.loads, file)):

5 connection.execute (insert (articles), {

6 "id": article_id,

7 "title": article["title"]

8 »

9

0 for section_title, section_text in zip(article["section_titles"], articlel["

section_texts"]):

11 connection.execute(insert(sections), {
12 "id": section_id,

13 "article_id": article_id,

14 "title": section_title,

15 "text": section_text

16 b

17 section_id += 1

The code shows shown above how we read the Gensim output file and insert the
database using SQLAlchemy.
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We also create indexes for the primary key of the article and sections table and
the articles_id column of the sections table using the following SQL commands:

-- Primary key indexes

CREATE INDEX IF NOT EXISTS articles_idx
ON articles(id);

CREATE INDEX IF NOT EXISTS sections_idx
ON sectiomns (id);

-- Foreing key index
CREATE INDEX IF NOT EXISTS sections_article_idx
ON sections(article_id);

To create the Trigram matching between prescribed drugs and Wikipedia titles,
we used the Postgres Trigram extension. Therefore, we used the following SQL
commands to accomplish this.

CREATE INDEX IF NOT EXISTS title_idx
ON articles
USING GIN (title gin_trgm_ops);

First, we create a Trigram index to search the Wikipedia titles faster. This index
acts just as a speed-up for the following command, and we do not use this index
further.

CREATE TABLE IF NOT EXISTS drug_wikipedia_title_trgm_mapping
As (
SELECT
drugs.drug as drug,
articles.id as article_id,
similarity(articles.title, drugs.drug) as similarity
FROM
articles,
(
SELECT
DISTINCT prescriptions.drug
FROM
prescriptions
) AS drugs
WHERE
articles.id = (
SELECT
articles.id
FROM
articles
WHERE
articles.title %% drugs.drug
ORDER BY
similarity(articles.title, drugs.drug) desc
LIMIT
1

)

Then we create the matching table using an SQL Select with the SQL statement
mentioned above. The Select query takes the distinct set of drugs and finds the arti-
cle with the best matching title for every drug using the before-mentioned Trigram
index. We also store the trigram similarity of the best match in this table for later
use.

ALTER TABLE drug_wikipedia_title_trgm_mapping
ADD PRIMARY KEY(drug);

ALTER TABLE drug_wikipedia_title_trgm_mapping
ADD FOREIGN KEY(article_id)
REFERENCES articles (id);

Lastly, we alter the created table by adding the drug column as primary key and
the article_id as a foreign key to the articles table.
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4.3 Dataloading

4.3.1 Drug Classifier

To generate the classes for the drug classifier mentioned in we use the following
query:

SELECT
drug
FROM
prescriptions
GROUP BY
drug
ORDER BY
count (*)
LIMIT
$class_limit

Listing 4.1: drug classifier classes query

The query orders the drugs by the number of prescriptions. This approach allows
us to select the most prescribed medications. Additionally, we limit the list by
$class_limit which we replace by the number of classes the classifier should pre-
dict. Furthermore, we create an id mapping in python for the result of the query
where we assign each drug a class id between 0 and $class_limit.

After that, we use the following query to gather the positive classes for every
admission note:

SELECT
hadm_id, drug
FROM
prescriptions
WHERE

drug in $drugs

We represent the positive classes as a mapping from admission notes id to drugs.
Furthermore, we use the hadm_id and drug columns from the prescription table to
obtain the data for the mapping. In addition, we filter out prescriptions that contain
drugs that we do not want to classify. Therefore, $drugs we replace by the result of
To obtain the mapping, we group the result of this query with python
by the hadm_id and map the drug to its assigned class id.

Finally, we use the following query to gather the admission notes:

SELECT
id, text
FROM
admission_notes
ORDER BY
id ASC

We order by the id to obtain the admission notes in the same order for every run.
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4.3.2 Bi-Encoder

For the Bi-Encoder, we use the following query to select the Wikipedia articles we
want to use:

SELECT
article_id
FROM
(
SELECT DISTINCT
drug_wikipedia_title_trgm_mapping.article_id as article_id,
prescriptions.hadm_id as hadm_id
FROM

prescriptions,
drug_wikipedia_title_trgm_mapping,
sections
WHERE
prescriptions.drug = drug_wikipedia_title_trgm_mapping.durg
AND drug_wikipedia_title_trgm_mapping.article_id = sections.article_id
AND drug_wikipedia_title_trgm_mapping.similarity >= 0.8
AND sections.title = ’Introduction’
)
GROUP BY
article_id
ORDER BY
count (*)
LIMIT
$class_limit;

Listing 4.2: Bi-Encoder Wikipedia articles query

This query gathers the Wikipedia article ids of the drugs and orders them by the
number of admissions the corresponding drug is used. This approach allows us to
select the Wikipedia articles of the drugs which medical doctors most use. The
query is nested. The inner Select statement creates distinct Wikipedia article ids
and admission ids from the prescriptions table. The trigram similarity between the
prescribed drug and the mapping table is greater or equal to 0.8, which corresponds
to the similarity mentioned in [3.4.4] Also, the corresponding Wikipedia article
should have an introduction section. The outer select then takes this set and groups
it by the Wikipedia article id and orders it by the number of admissions. As before,
we replace $class_limit by the number of drugs the Bi-Encoder should predict. As
mentioned in we found that similarity of 0.8 provides a good enough matching
while linking as many drugs as possible. Also, as mentioned in [3.4.3] we use the
introduction section as it is present in every Wikipedia document and summarizes
the content of it well.
After that, we use the following query to obtain the article text:

SELECT
article_id,
text
FROM
sections
WHERE
article_id in $article_ids
AND title = ’Introduction’

In this query, we use the sections table, filter out Wikipedia articles we do not
want to use, and only take the introduction section. articles_ids is replaced by
the Wikipedia article ids we wish to use.
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As mentioned in [3.5.2] we filtered out admission notes which do not have any
Wikipedia articles containing drug descriptions of drugs used in this admission.
We use the following query to create a distinct set of admission ids that meet this
requirement:

SELECT DISTINCT
prescriptions.hadm_id
FROM
prescriptions,
drug_wikipedia_title_trgm_mapping
WHERE
prescriptions.drug = drug_wikipedia_title_trgm_mapping.drug
AND drug_wikipedia_title_trgm_mapping.article_id in $article_ids

Listing 4.3: Bi-Encoder admissions query

This query creates the above-mentioned distinct set by filtering the prescriptions by
the Wikipedia article id containing the description of the prescribed drug. Therefore,

we replace $article_ids by the result of [Listing 4.2

Afterward, we obtain the admission note texts using the following query:

SELECT
id,
text,
FROM
admission_notes
WHERE
id in $admission_note_ids
ORDER BY
id ASC

Listing 4.4: Bi-Encoder admission note text query

For this query, we filter out admission notes we do not want to use. Therefore, we
replace $admission_note_ids by the result of As for the drug classifier,
we order the result by the admission id to obtain the admission notes in the same
order for every run.

Then, we use the following query to obtain a mapping from admissions notes to
Wikipedia articles containing the descriptions of the drugs used in this admission:

SELECT DISTINCT
prescriptions.hadm_id,
drug_wikipedia_title_trgm_mapping.article_id
FROM
prescriptions,
drug_wikipedia_title_trgm_mapping
WHERE
prescriptions.drug = drug_wikipedia_title_trgm_mapping.drug
AND drug_wikipedia_title_trgm_mapping.article_id in $article_ids

Listing 4.5: Bi-Encoder admission Wikeedia drug article mapping

We use the prescription and drug_wikipedia_title_trgm_mapping tables to
obtain the data for the mapping. Furthermore, we filter out the Wikipedia articles
we do not want to use. Therefore, we replace $article_ids with the Wikipedia
article ids we want to use. To obtain the mapping, we group the results of this query
with python by the hadm_id.
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4.3.3 Article Classifier

As mentioned in [3.5.1) we created the article classifier to obtain results, which we
could compare more easily with the Bi-Encoder approach. Therefore, we can reuse
a lot of the code used for the Bi-Encoder data loading.

To obtain the classes of the article classifier, we use the query from [Listing 4.2
Like the drug classifier, we assign each article id a class id between 0 and $class_limit.

As for the Bi-Encoder approach, we filtered out admission notes which do not
have any Wikipedia articles containing drug descriptions of drugs used in this ad-
mission. Therefore, we use the query from [Listing 4.3 We then use the query from
to obtain the admission note texts.

Afterward, we use the query in to obtain the positive classes for every
admission note. Then, we represent the positive classes as a mapping from admission
note to Wikipedia article id. To create the mapping, we group the query result by
the hadm_id and map the article_id to its assigned class id.

4.4 PreProcessing

We use the BERT word piece tokenizer from the Huggingface Transformers library
to tokenize text content for BERT. The tokenizer also automatically adds the special
tokens like /[CLS] or [SEP]. We use the following code to load the tokenizer:

1| tokenizer = BertTokenizerFast.from_pretrained(bert_path, use_fast=True)

The bert_path variable contains the name of the pretrained BERT model. We use
the dmis-lab/biobert-v1.1 model as base for all of our experiments. Furthermore,
we use the fast variant of the BERT tokenizer which is implemented in Rust instead
of Python. Then, we use the following code to tokenize our text input:

1| tokenized = self.tokenizer.encode_plus(
2 text,

3 truncation=True,

4 max_length=max_length,

5 padding=’max_length’)

The text variable contains the text we want to tokenize. The encode_plus function
accepts text in different formats. In our case, it accepts either a string containing
a sentence or an array of strings containing multiple sentences. Furthermore, we
truncate tokenized input if it gets longer than max_length and pad it to max_length
if it gets shorter. This approach should make batching easier and should prevent
that the training runs out of memory. After that, we use the following code to access
the tokenized input.

—

input_ids = tokenized[’input_ids’]
2| attention_mask = tokenized[’attention_mask’]

input_ids is the tokenized input, while the attention_mask is the attention mask.
The attention mask masks padded tokens.
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4.5 Experimental Setup

We use PyTorch by |Paszke et al.|((2019))) as the framework for hardware-accelerated

deep learning. Therefore, we have implemented most parts of our training and

evaluation pipeline in python. Also, we used PyTorch-Lightning by [Falcon| ((2019))

to add more structure to our code and reduce boilerplate. Furthermore, we use the

Huggingface Transformers library by [Wolf et al.| ((2020))), which allows us to quickly

load and use BERT and other pre-trained transformer-based models with PyTorch.
We use the following code to load pretrained BERT models:

bert = BertModel.from_pretrained(bert_path)

The bert_path variable contains the name of the pre-trained BERT model. We use
the dmis-lab/biobert-v1.1 model as the base for all of our experiments. Then we
use the model as mentioned below to obtain embeddings.

embeddings = self.bert(input_ids, attention_mask=attention_mask, return_dict=False)

[o]

The input_ids and attention_mask variables are the output from the tokenizer
mentioned in [£.4. Additionally, we input multiple tokenized inputs as a batch at
once. With return_dict set to False the model returns a tuple containing a vector
with the model output. The returned tuple only has one entry. Therefore, we are
extracting it using the [0] operation. In both the Classifier and Bi-Encoder, we use
the output from the [CLS] token, which is the first token. To access this vector, we
use the following code:

1| embeddings [:, 0]

Because we input multiple tokenized inputs as a batch at once, we need the whole
slice of the first dimension containing the output from every item in the batch. So
we then take the first output from the second dimension, including the output for
every input token.

We trained the models inside a Kubernetes cluster and assigned one Nvidia A100
40GB GPU to each training instance.

4.5.1 Classifier

We trained four variants of the model. Two variants, we called drug classifier and
article classifier in [3.5.1] The remaining variants come from both variants being
trained with and without the long-tail. Furthermore, we use the Adam optimizer
with a weight decay of 0.1 and a constant learning rate scheduler with 500 warmup
steps. Also, We trained the models with 32-bit precision.

4.5.2 Bi-Encoder

We trained four variants of the model, two with single label loss and two with
multi-label loss as mentioned in Like for the classification approach, The
remaining variants come from both variants being trained with and without long-
tail. Additionally, We used the Adam optimizer with a weight decay of 0.1 and a
constant learning rate scheduler with 500 warmup steps. We also trained the models
with 32-bit precision.
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4.6 Hyperparameter Optimization

We run Hyperparameter Optimization (HPO) to determine the optimal hyperparam-
eters to run our experiments. Therefore, we used RayTune by |[Liaw et al.| ((2018))).
Unlike the training, we run the hyperparameter optimization at 16 Bit precision.
[Table 4.1] and [Table 4.2] show what hyperparameters we tune for each approach and
how we tune them.

Hyperparameter ‘ Tuning method
Learning Rate loguniform(1-107°,5-107°)
Batch Size 16, 32

Table 4.1: Classifier HPO

Hyperparameter ‘ Tuning method
Learning Rate loguniform(1-107°,5-107°)
Batch Size 8,16

Activation Function | tanh, mish, sigmoid, no activation

Table 4.2: Bi-Encoder HPO

4.7 Summary

In this chapter, we first gave insights about the inner workings of our PostgreSQL
based on the data preprocessing pipeline. Then, we showed how we import the
data into PostgreSQL, which is available in different formats. Moreover, we showed
how we use SQL to request the data from PostgreSQL, saving on poorly performing
transformations on the Python side or time and memory expensive Python-based
preprocessing steps. Additionally, we showed how we use the BERT word piece
tokenizer from the Huggingface Transformers library for text sequence tokenization.

Next, we explain the general experimental setups of the different approaches we
employ. Then, we showed how we use the BERT model from the Huggingface Trans-
formers library to encode tokenized sequences. Finally, we present our hyperparam-
eter optimization setup for the different approaches and what hyperparameters we
are tuning.
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Chapter 5

Evaluation

5.1 Introduction

In this chapter, go over our findings and how we archived them. First, we present
our hypothesis. After that, we offer the evaluation metrics for the different ap-
proaches. Afterward, we present our results of the hyperparameter optimizations
and experiments for the other models. Finally, we discuss our findings and explain
what conclusions we draw from them.

5.2 Hypothesis

Bi-Encoder better than Classifier We expect the Bi-Encoder approach to per-
form better than the classifier approach because the classifier does not have any ad-
ditional information about the classes representing drugs such as effects, risks, and so
forth. We expect the classifier to infer this information while training. However, We
provide this information to the Bi-Encoder with drug descriptions from Wikipedia.
We hope this will help the Bi-Encoder create a relation between admission notes
and drugs and therefore boost prediction performance.

Training with long-tail should perform significantly worse We expect
model variants trained with long-tail to perform considerably worse than variants
without it because the classes in the long-tail have fewer examples than the other
classes. Therefore, they emerge less often, and also, fewer inputs leading to this class
means the model does not generalize well on these classes. Especially, We expect
that metrics that weight all classes equally perform even worse because we expect
the prediction of drugs with fewer examples to be worse.

Multi-label Bi-Encoder should perform better than single-label Bi-Encoder
We expect the Bi-Encoder variant using the multi-label loss to perform better than
the variant using the single-label loss. As mentioned in for the single-label
loss, the model should only predict the selected drug as relevant for an admission
note in a batch. This approach trains additional noise as other selected drugs might
be relevant for an admission note in a batch. Thus, we expect the multi-label loss
approach to perform better as its representation includes all relevant drugs for an
admission note.
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The precision score should be worse than the recall score We expect the
precision score to be worse than the recall score for the classifier because we have a
label imbalance meaning more negative than positive results due to the long-tail of
the data. Therefore, it is easier to create false-positive samples than false-negative
samples as a random positive prediction is more likely to be false than a random
negative prediction. Therefore, we expect the precision score to be worse than
the recall because false-positive predictions worsen the precision, and false-negative
worsen the recall.

Bigger training batch sizes for the Bi-Encoder should yield better perfor-
mance We expect that bigger batch sizes for the Bi-Encoder training yield better
prediction performance because the number of relations between admission notes
and drugs, the model has to predict for a batch rises by the square of the batch size.
Therefore, the problem becomes harder for bigger batch sizes, and we expect this
to lead to better performance.

5.3 Classification Evaluation Metrics

For evaluation, we take the sigmoid activated output mentioned in [3.5.1] As men-
tioned, the classification output is a vector where each dimension corresponds to a
prescribable drug, with a value between 0.0 (not prescribed) and 1.0 (prescribed).
The values of the vector are not binary but need to be because the target is binary.
A drug can either be prescribed or not. Therefore, we use a threshold to obtain
a binary value for every prescribable drug. If the value is above the threshold, we
assume the drug as prescribed, and if it is below, we assume the drug as not pre-
scribed. For all metrics except area under ROC (AUROC), we used a threshold of
0.5.

5.3.1 Accuraccy

The accuracy score is the ratio between the amount true predictions and the number
of predictions. The disadvantage of the accuracy score is that it can be misleading
for imbalanced datasets. Even so, it is widely used due to its simplicity. Therefore,
we do not restrict our evaluation to the accuracy score. The following formula shows
how we calculate the accuracy:

|{true predictions}| (5.1)

accuracy = |{prediction8}|

5.3.2 Recall

The recall score describes how many of the positive samples the model predicts
positively. In our case, a high recall means that the predicted drugs contain most
of the prescribed drugs. We use this metric to measure if the model predicts the
values we want to predict. The following formula shows how we calculate the recall:

[{true positive predictions}|

recall = (5.2)

[{positive samples}|
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5.3.3 Precision

The precision score describes how many of the positive predictions are actually
positive. We calculate it by dividing the amount true-positive predictions by the
number of positive predictions. A high precision score means that the prediction
does not contain many wrong values. We use this metric to measure the noisiness
of the output. The following formula shows how we calculate the Precision score:

[{true positive predictions}|

(5.3)

precssion = [{positive predictions}|

534 F1

The F1 is the harmonic mean of precision and recall. A model with high F1 scores
usually features good recall and precision. The following formula shows how we
calculate the F1 score:

2 precision - recall

F, = (5.4)

precission™! + recall =" precision + recall

5.3.5 AUROC

The AUROC is the integral of the receiver operating characteristic (ROC) curve.
This curve plots between the true positive rate (TPR) on the y-axis and the false
positive rate (FPR) on the x-axis with different classification thresholds. Thresholds
between 0.0 and 1.0 are used. The true positive rate is a synonym for recall. The
following formulas show how the TPR and FPR is calculated:

[{true positive predictions}|

recall = TPR = —
positive samples

false positive predictions '

FPR =

[{negative samples}|

We can interpret the AUROC score as the probability that the model ranks a ran-
dom positive example higher than a random negative example. We use the macro
AUROC variant, which calculates the AUROC for each class separately and then
takes the mean over every class to obtain the final value.

5.4 Bi-Encoder Evaluation Metrics

As mentioned in[3.5.2] the output of the Bi-Encoder is a vector where each dimension
corresponds to a drug description with the value representing the relevance of the
description to the admission note. Because we use the dot product similarity, the
output values are positive but not restricted upward. We interpret the model output
as ranking, where lower values correspond to a higher rank for Recall@k and NDCG.
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5.4.1 AUROC

Because the output of the dot product similarity is positive and not restricted up-
wards and the AUROC score needs values between 0.0 and 1.0, we use the sigmoid
function to limit the values of the output between 0.0 and 1.0. We use this metric
to compare the prediction results of the classification approach with this approach.

5.4.2 Recall@k

As mentioned above, we interpret the model output as ranking. As the user of such
ranking most likely will not look through all the ranked results. Therefore, this met-
ric looks at the top-most ranked items. We specify the number of items we consider
with k. For example, with a k of 5, we consider the 5 top-most results. The Recall@k
describes how many items in the k top most ranked results are relevant/positive.
The following formula shows how we calculate the Recall@k score:

cecallap  relevant predictions} 0 {top k highest ranked items}|

5.6
max(|{relevant items}|, k) (5.6)

To not negatively affect the result, we take The maximum between the number
of relevant items and k. We do this as the k top highest ranked results could at most
contain k relevant items. Thus, a high Recall@k corresponds to the result having
many or near to all relevant items. We measure the Recall@k for a k of 1, 5, 10,
and 32.

5.4.3 NDCG

The Normalized Discounted Cumulative Gain (NDCG) is calculated by dividing
the Discounted Cumulative Gain (DCG) by the Ideal Discounted Cumulative Gain
(IDCG). In contrast to the Recall@k the NDCG, DCG and IDCG could also work
with non-binary relevances. In our case, we use binary relevances like for the Re-
call@k. Like the Recall@k the NDCG, DCG and IDCG could be limited to the k
top most ranked items. We do not use this limit in our case, and we could consider k
to be set to the number of ranked documents. The DCG is the sum of the relevance
of the ranked items weighted by their position. The following formula shows how
we calculate the DCG score:

relevance;
D )
GGk = Z logs(i+ 1) (5:7)

The disadvantage of the DCG is that the number of relevant items and the range
of relevance values could have an impact on the score. Therefore, we divide the DCG
by the IDCG to obtain the NDCG. The IDCG is calculated the same way as the
DCG, but now we use the ideal ranking. The following formulas shows how we
calculate the IDCG, and NDCG score:

truth;
IDCG), = Z Tog(i+ 1) (5.8)
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DCGy,
IDCGYy,

We calculate the NDCG for every evaluation sample and take the mean of these
values to obtain the final score.

NDCGy =

(5.9)

5.5 Preprocession

5.5.1 AUROC

As mentioned above, we calculate the AUROC for each class separately. Therefore,
we filter out classes with only positive or only negative samples to not divide by 0.0
when calculating the true-positive or true-negative rates.

5.6 Results

5.6.1 HPO Classifier

We use HPO to determine the best hyperparameter combination for our experiments.
In [£.5.1] we mentioned we trained 4 variants of the model. We ran HPO on two
variants, the drug classifier without long-tail and the article classifier without long-
tail. The variants with long-tail inherit the hyperparameters from the variants
without long-tail.

We found no significant difference between the model performance and the batch
sizes used. We show the hyperparameters we settled on in [Table 5.1 The models
postfixed with ” All” are variants with long-tail while the others are variants without
long-tail.

Model Batch Size | Learning Rate
Drug Classifier 16 4-107°
Drug Classifier All 16 4-107°
Article Classifier 32 4-107°
Article Classifier All 32 4-107°

Table 5.1: Classifier hyperparameters
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5.6.2 HPO Bi-Encoder

As for the classifier, we use HPO to determine the best hyperparameter combination
for our experiments. In[4.5.2] we mentioned we trained 4 variants of the model. We
ran HPO on two variants, the multi-label loss Bi-Encoder without long-tail and the
single-label loss Bi-Encoder without long-tail. The variants with long-tail inherit
the hyperparameters from the variants without long-tail.

We found that bigger batch sizes lead to better performance. Furthermore, we
found that the sigmoid activation function performs significantly worse than the
others, while they perform more or less the same. We show the hyperparameters
we settled on in The model containing "MC” in the name refers to the
multi-label loss variants, while the others refer to the single-label loss variants. The
models postfixed with 7 All” are variants with long-tail while the others are variants
without long-tail.

Model Batch Size | Learning Rate | Activation Function
Bi-Encoder 16 1.5-107° mish
Bi-Encoder All 16 1.5-1075 mish
Bi-Encoder MC 16 1.5-107° mish
Bi-Encoder MC All 16 1.5-107° mish

Table 5.2: Bi-Encoder hyperparameters

5.6.3 Experiments Classifier

Model Accuracy | Precision | Recall F1 AUROC
Drug Classifier 0.9735 0.7550 | 0.4165 | 0.5123 | 0.8392
Drug Classifier All 0.9940 0.7000 | 0.4294 | 0.5080 | 0.7799
Article Classifier 0.9224 0.7604 | 0.5371 | 0.6135 | 0.8112
Article Classifier All | 0.9799 0.7590 | 0.5208 | 0.5972 | 0.8083

Table 5.3: Classifier results

shows the results from the experiments. The naming is the same
as mentioned in [5.6.1 We picked the results by selecting the highest epoch score
for each metric around the highest AUROC result. The article classifier performs
better when looking at the precision, recall, and f1 score. Again when looking at the
AUROC score, the approaches differ not that much. The variants without long-tail
overall perform slightly better than the variants with long-tail.
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5.6.4 Experiments Bi-Encoder

Model AUROC | Recall@l | Recall@5 | Recall@10 | Recall@32 | NDCG
Bi-Encoder 0.6675 0.3888 0.3394 0.3234 0.4219 0.6614
Bi-Encoder All 0.6853 0.3294 0.2669 0.2278 0.1923 0.5270
Bi-Encoder MC 0.7666 0.9550 0.8599 0.7780 0.7282 0.8870
Bi-Encoder MC All | 0.7474 0.9514 0.8584 0.7766 0.6454 0.8523

Table 5.4: Bi-Encoder results

‘Table 5.4] shows the results from the experiments. The naming matches the
naming in [5.6.2] We picked the results by selecting the highest epoch score for each
metric around the highest NDCG result. We found that the multi-label loss variants
perform way better than the single-label loss variants. Furthermore, the variants
without long-tail tend to perform better than the variants with long-tail.

5.6.5 Approach comparison

Model AUROC
Article Classifier 0.8112
Bi-Encoder 0.6675
Bi-Encoder MC 0.7666
Article Classifier All | 0.8083
Bi-Encoder All 0.6853
Bi-Encoder MC All 0.7474

Table 5.5: Approach comparison

We compare both approaches by the AUROC as it is the only metric that both
approaches support. We also omitted the results from the drug encoder. It is only
comparable to a limited extent with the other models because it is trained and
validated on another result set. Also, we group models that we trained on the same
result set. As you can see in [Table 5.5 the AUROC of the classifier is generally
higher than that of the Bi-Encoder.

5.7 Discussion

Bi-Encoder worse than Classifier approach We found that the Bi-Encoder
approach performs worse than the classifier approach. Therefore, this does not
confirm our hypothesis. However, we only measure the AUROC score for both
models, and consequently, this is the only score we can compare. Furthermore,
since the AUROC score is used for evaluating multi-label classifiers, it might not be
that suitable for evaluating the Bi-Encoder, since it is a ranking model.
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Training with long-tail only perform slightly worse We can show in [5.6.3
and that the variants with long-tail only perform slightly worse than variants
trained with long-tail. We expected the loss of the macro AUROC score should be
even bigger because it is averaged over the classes and weights all classes equally.
This finding indicates that the predictions of drugs with fewer examples might not
impact prediction performance as much as we thought. Although this confirms our
hypothesis, the remaining difference might be caused by not separately optimizing
hyperparameters on these models. Nevertheless, it is not worth it to train without
long-tail because rarely used drugs are particularly interesting because they are also
considered less frequently.

Multi-label Bi-Encoder performs significantly better than single-label Bi-
Encoder We found that the Bi-Encoder variant using the multi-label loss performs
considerably better than the variant using the single-label loss. Therefore, we ex-
pected a less significant increase in performance between the model variants. Still,
the additional noise in the data of the single-label loss variants seems to cause
considerable damage to the prediction performance of these variants. This finding
confirms our hypothesis.

Precision score is better than recall score All variants of the classifier feature
a better precision score than the recall score, even the variants with long-tail. This
finding refutes our hypothesis, and the classifier predicting fewer labels overall with
higher accuracy might cause these scores.

Bigger training batch sizes for Bi-Encoder yield better performance We
show in that bigger training batch sizes lead to better performance, which
confirms our hypothesis. However, although we only tested two batch sizes, the
gain might slow down with bigger batch sizes suggesting that there might be a
trade-off between batch size and computational efficiency.

Bi-Encoder performs significantly worse with sigmoid activation We
found that the Bi-Encoder performs considerably worse if we use sigmoid activa-
tion for the feed-forward layers of the encoders. We did not expect this outcome
since all the other activation functions seem to perform fine with similar good re-
sults while sigmoid is a negative outlier. Thus, there has to be some property of
this activation function that makes it particularly unfavorable. Furthermore, if the
activation function significantly impacts model performance, sigmoid could not be
the only function, negatively impacting model performance.
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5.8 Summary

In summary, we showed that our proposed multi-label loss approach for the Bi-
Encoder performs significantly better than the single-label loss approach in every
measured metric for this task. This finding suggests that our hypothesis of the noise
introduced by the single-label loss approach hinders the model from unfolding its full
potential. Surprisingly, we showed that all approaches only perform slightly worse
when trained with the long-tail and that the prediction of classes with fewer exam-
ples is not significantly worse. Another surprising finding is that the precision score
is higher than the recall score for all classification experiments, even for the exper-
iments with the long-tail. Moreover, we showed that, as expected, the Bi-Encoder
approach yields better performance with bigger batch sizes. Also, surprisingly we
showed the Bi-Encoder performs significantly worse with the sigmoid activation of
the linear layers of the encoder blocks, suggesting that this function has some prop-
erty that makes it undesirable for this task or maybe even the Bi-Encoder. Finally,
surprisingly, we showed that the Bi-Encoder approach performs worse than the Clas-
sification approach, contrary to our hypothesis that the additional information from
the drug descriptions augments the model performance.
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Chapter 6

Conclusion

6.1 Summary

This thesis aims to find a practical approach to generate helpful drug recommenda-
tions for a medical doctor through a textual patient representation using Transformer-
based neural networks. First, we presented the foundational concepts of this thesis
like the Transformer Architecture by Vaswani et al. ((2017)), BERT by Devlin et al.
((2019)), and the Bi-Encoder by Humeau et al.| ((2020))). Moreover, we went through
the related work of the outcome prediction and medication prediction tasks.

Inspired by recent advances in outcome prediction tasks, we proposed a medica-
tion prediction task definition in the methodology. Also, we presented a medication
prediction dataset based on the MIMIC-III database by /Johnson et al. ((2016)),
the admission note dataset by van Aken et al| ((2021)) and Wikipedia. Further-
more, we proposed a Wikipedia medication dataset which we linked to MIMIC-III
using Trigram matching. Moreover, We showed that the data on prescribed drugs in
MIMIC-IIT is long-tail. Furthermore, we proposed multiple approaches to solve our
proposed task, which are a classification approach using BERT and a Bi-Encoder
approach using BERT-based encoders. Likewise, we proposed two variants of the Bi-
Encoder, one using single-label loss and one using multi-label loss, which promises
to evade the noise introduced by the single-label loss variant.

Following the Implementation, we went through or PostgreSQL base data pro-
cessing stack. Then, we gave insight into our experimental setup and presented the
hyperparameters we tune and how we tune them.

Continuing with the Evaluation, we showed that our proposed multi-label loss
approach for the Bi-Encoder performs significantly better for every metric measured,
confirming our hypothesis that the noise introduced by the single label loss approach
lowers the performance. Surprisingly, we showed that training with or without long-
tail does not impact the performance as much as expected for this task and that the
prediction of classes with fewer examples is not significantly worse. Also, surprisingly
we showed that the precision metric is higher than the recall score for the classifier
approach independent of if we trained the model with or without long-tail. We
also showed that, as expected, larger batch sizes yield better performance for the
Bi-Encoder. Additionally, surprisingly we showed that the Bi-Encoder performs
significantly worse using sigmoid activation on top of the encoder block of the Bi-
Encoder, suggesting some property of the function is undesirable for the task or
maybe even the Bi-Encoder. Furthermore, we showed that surprisingly the Bi-
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Encoder approach performs worse than the Classification approach, contrary to our
hypothesis that the additional information from the drug description augments the
model’s performance.

6.2 Future Work

6.2.1 Other architectures

There most certainly will be architectures that will solve the task better than the
approaches named here. In addition, there are other learning to rank architectures
like the PolyEncoder or CrossEncoder proposed by Humeau et al. ((2020))) which
have shown better performance for other tasks than the Bi-Encoder does.

6.2.2 Better source for drug descriptions

There exist databases like DailyMed[| from the FDA that deliver a better source
for drug descriptions. It also offers the option to resolve to the National Drug
Code (NDC). Therefore, there should be fewer potential linking errors between
prescribed drugs and drug descriptions. The other problem with Wikipedia is that
some prescribed drugs like Natrium Chloride are linked correctly, but the introduc-
tion section contains general information about the chemical compound rather than
the medical use.

6.2.3 More activation functions

We found in that the activation function of the feed-forward layer of the en-
coders has a significant impact on model performance and that the sigmoid activa-
tion function performs significantly worse. In contrast, the other functions perform
more or less the same. Thus, experiments with more activation functions may yield
more insight into which properties of the sigmoid function cause it to perform signif-
icantly worse or reveal better-suited activation functions. In addition, experiments
on different datasets might indicate that some activation functions might be more
suitable for the Bi-Encoder architecture than others or that the choice of activation
function is problem-specific.

6.2.4 Dosing

There is a range of drugs whose effect depends on other factors than the active
ingredient like dose or route. However, especially the dose significantly influences
the drug’s effect, like Aspirin, which can be used as a blood thinner or as a painkiller
depending on the dose. Therefore, Adding this information to the prediction target
might be interesting, as it is not practically useful without a dose recommendation.

Thttps://dailymed.nlm.nih.gov/dailymed/
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6.2.5 Longer Sequences

In our example, we used a textual representation of drugs in the form of Wikipedia
articles. However, the sequence length of BERT limits our ability on how much
information we could encode into the final embeddings. Nevertheless, the sequence
length might not be long enough to capture all aspects of a drug or patient, hurt-
ing performance. There are multiple approaches of increasing the sequence length
of Transformer based models like the Longformer by [Beltagy et al. ((2020)), or
Reformer by Kitaev et al.| ((2020)).

6.2.6 Drug Linking

Linking drug names to Wikipedia titles using trigram matching is most likely not
the approach with the best quality results. We were also not able to link all drugs
also including some of the most used drugs. Wrongly linked drugs introduce noise
which might hurt performance. The dataset we used does also not include redirects,
and we do not handle disambiguation pages properly. Using approaches that address
drugs, which are only named using abbreviations better, is especially interesting. It
is also possible to use full-text search, the Wikipedia search API, or a manually
created matching to link drug names to Wikipedia articles.
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