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Basics

n treatment factors A,B,C,. . . ,H,J,K,. . .
• each with levels 0 and 1 from GF(2),

and addition modulo 2
(used here)

• or each with levels −1 and +1, and multiplication
(closer to conventional industrial statistics,
automatically yields nice model matrices for estimation)

A full factorial has all 2n conceivable level combinations.

A full model has 2n effects (1 constant, n main effects,
(n

2
)
2-factor interactions, ...).
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Full model model matrix (n=4 factors)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
b 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
ab 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
c 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ac 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
bc 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
abc 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
d 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
ad 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
bd 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
abd 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
cd 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
acd 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
bcd 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
abcd 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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Basics

Purpose control for variation in the experimental material

Blocking N = 2n runs can be assigned to N/2q = 2n−q blocks of size 2q

Block factor has 2n−q levels (needs 2n−q − 1 df)

Assumptions
• block effect active, but not of interest
• block factors do not interact with treatment factors
• in line with Godolphin, look at only a single block factor
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Blocking a full factorial in n factors

Approach of
FrF2

• pick n − q independent effect columns for generating the levels of the block
factor
e.g. for n = 4 and q = 2: b1 = ABC and b2 = ABD

• the remaining dfs of the block factor are implied by the generating columns
e.g. b3 = (b1 + b2) mod 2 = (ABC + ABD) mod 2 = CD

Approach in
Godolphin
(X approach)

• pick q independent rows without all-zero columns that generate a group of
size 2q,
which is the principal block (pb)

• take the other blocks as the cosets of the principal block
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X approach in detail

q × n matrix X, rank q, no all-zero columns

Example
continued

X =


A B C D

bcd 0 1 1 1
acd 1 0 1 1

 =⇒ pb =



A B C D

(1) 0 0 0 0
bcd 0 1 1 1
acd 1 0 1 1
ab 1 1 0 0


Further blocks are the cosets:

pb + a: a, abcd, cd, b
pb + c: c, bd, ad, abc
pb + d: d, bc, ac, abd
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Example: Blocking a full factorial
The four rows of the principal block for two different blockings of the full factorial in
factors A, B, C and D.
Bold face: the 2× 4 X matrix for the blocking.
The table shows columns for all factorial effects.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

blocking 1 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

blocking 2 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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Regular fractions (unblocked)

A regular fraction (2pth fraction of the 2n run full factorial)
has N = 2k = 2n−p = 2n/2p level combinations.
Example

n = 6, p = 2, k = n − p = 4
N = 16 runs, design matrix 16× 6, model matrix 16× 16

• A regular fraction is obtainable
from a full factorial in k = n − p basic factors by p > 0 defining contrasts,
which declare the effects from the full model in the basic factors
that define the levels of p additional factors.
Example: E=ABC, F=ABD

• Equivalently, there is a group theoretic creation approach (not discussed).
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Full model model matrix (n=4 basic factors)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

(1) 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
a 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
b 1 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
ab 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
c 1 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
ac 1 1 0 1 1 0 1 0 0 1 0 1 1 0 1 0
bc 1 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0
abc 1 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
d 1 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
ad 1 1 0 1 0 1 0 1 1 0 1 0 1 0 1 0
bd 1 0 1 1 0 0 1 1 1 1 0 0 1 1 0 0
abd 1 1 1 0 0 1 1 0 1 0 0 1 1 0 0 1
cd 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0
acd 1 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
bcd 1 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
abcd 1 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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Regular fractions

Fractionating counfounds the 2n effects of the full model
in groups of 2p effects that cannot be separated.

Example Column headers for the model matrix
show the confounding pattern .

0 1 2 3 4 5 6 7

I A B AB C AC BC ABC

ABCE BCE ACE CE ABE BE AE E
ABDF BDF ADF DF ABCDF BCDF ACDF CDF
CDEF ACDEF BCDEF ABCDEF DEF ADEF BDEF ABDEF

8 9 10 11 12 13 14 15

D AD BD ABD CD ACD BCD ABCD

ABCDE BCDE ACDE CDE ABDE BDE ADE DE
ABF BF AF F ABCF BCF ACF CF
CEF ACEF BCEF ABCEF EF AEF BEF ABEF
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Group of words and resolution

Words • are effects that coincide with the constant I, e.g.:
I
ABCE
ABDF
CDEF

• constitute a group with 2p elements (here: 22 = 4).
• give rise to a WLP (word length pattern, frequency table of word lengths):

e.g. A0 = 1,A1 = 0,A2 = 0,A3 = 0,A4 = 3

Resolution length of shortest non-trivial word, here IV
larger is better
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Matrix notation for fractionating

Matrix notation for defining contrasts
E=ABC and F=ABD:

Z =


A B C D

E 1 1 1 0
F 1 1 0 1



Z is used in Godolphin’s blocking approach for fractional factorials.
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Blocking a fractional factorial
n factors, 2k = 2n−p runs, p > 0, k = n − p basic factors
q × n matrix X needed for creating 2q × n principal block

Change versus
full factorial

cannot freely choose all n columns of X,
k columns for the basic factors determine the entire X

Approach Choose q × k matrix XI, calculate q × p matrix XII = XIZ>,
and use X = (XI

...XII).

Example:
Previous X as

XI with
E=ABC and

F=ABD

XI =
(

0 1 1 1
1 0 1 1

)
and XII = XIZ> =

(
0 0
0 0

)

Problem XII may contain all-zero column(s)
→ treatment main effect(s) would be confounded with the block effect.

Solution brute force search over all XI for permissible blockings
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Example: Blocking a fractional factorial
The four rows of the principal block for two different blockings of the fractional
factorial with basic factors A, B, C and D and added factors E=ABC and F=ABD.
Bold face: the 2× 6 X matrix for the blocking: X = (XI

... XII)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD
E F

blocking 1 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

blocking 2 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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Clear 2fis

are not confounded with main effects or other 2fis,
and neither with the block factor

Situation
• some 2fis are of special interest
• other 2fis may not be of interest, but must not be assumed negligible
• higher order interactions can be neglected

Goal fractionate and/or block such that required 2fis are clear

Sources
• Grömping (2012) provided an algorithm for unblocked fractions
• Godolphin (2021) provided the relation of the X approach to clear 2fis

and a paper-catalogue for blocked fractions
• Grömping (2021) provided an automated algorithm for blocked fractions with

clear 2fis, based on both Grömping (2012) and Godolphin (2021)
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Clear interactions graphs (CIGs)

• each factor is the vertex of a graph
• there is an edge for each clear 2fi

16 runs, unblocked

1

23

4

5 6

32 runs, 8 blocks

1

23

4

5 6

32 runs, unblocked

1

23

4

5 6

Design CIG of best fraction for six factors
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Using CIGs

A B

C

D

E

F G 1

2
3

4

5

6
7

left: requirement CIG, right: design CIG (7-2.1)

Task allocate treatment factors such that required 2fis are clear

Example allocate treatment factors A to G to design factors 1 to 7
• B, C and E must be on 4, 5 and 7
• FrF2: subgraph isomorphism checks automate the allocation
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X approach for full factorial revisited

χq 2q − 1 possibilities for the columns of X:
elements of χq = {0, 1}q − 0q = {ξ1, . . . , ξ2q−1}

Important
Rule

The 2fi of a pair of factors is confounded with blocks
iff both factors have the same X column (Godolphin 2021).

Example:
Blocking 1

X =
(

0 1 1 1
1 0 1 1

)

CD is confounded with blocks,
the other five 2fis are clear.

Approach
• For a specific 2fi to be clear, assign different columns to its two factors.
• For a large number of clear 2fis, use the columns from χq in the highest

possible balance → see "profiles" below.
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Example: X approach for full factorial
The four rows of the principal block for two different blockings of the full factorial in
factors A, B, C and D.
Bold face: the 2× 4 X matrix for the blocking.
Highlighted : 2fis confounded with blocks

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

blocking 1 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 0 1 1 0 0 0 0 1 1
0 1 0 1 1 0 1 0 1 0 1 0 0 1 0 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

I A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

blocking 2 b1 b2 b3

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 1
0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0
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X approach for full factorial in graphs

• X partitions the design factors into 2q − 1 sets,
whose 2fis are confounded within sets (no edges),
but not between sets (edges).

• The design CIG is a full 2q − 1-partite graph for the partitions,
and thus 2q − 1 colourable.

• The sizes of the partition sets can be written in a profile ,
e.g. <5,5,3> or <9,3,1>.
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Four 3-partite graphs for 13 factors

Profile <5,5,3>
1

2
3

4

5

6

7

8

9

10

11

12

13

55 clear 2fis
Profile <7,3,3>

1

2
3

4

5

6

7

8

9

10
1112

13

51 clear 2fis

Profile <7,5,1>
12

3

4
5

6

7

8

9

10

11

12

13

47 clear 2fis
Profile <9,3,1>

1

2

3

4

5
6
7
8

9

10
11
12

13

39 clear 2fis

Estimability CIGs for the four different profiles of blocking the fraction 13-5.1 into
blocks of size 4.
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X approach for full factorial in graphs

A requirement CIG can be accommodated in blocks of size 2q,
if it is 2q − 1-colourable.

Profile <3,2,2>

A B

C

D

E

F G

Profile <3,3,1>

A B

C

D

E

F G

Requirement CIG that can be accommodated in blocks of size 4
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X approach for fractional factorial revisited

For a given X, the rule for confounding of 2fis with the block effect remains
valid.

Resolution V
fraction

If a suitable X has been found, the CIG coincides with that of a full factorial
blocked by this X.
The structure of Z restricts the possible profiles.

Example: for the best 256-run fraction for 13 factors in blocks of size 4,
there are only four profiles
(of 14 possible ones with three non-empty partitions).

Resolution IV
fraction

2fis may already be confounded with other 2fis in the unblocked fraction.
The CIG from blocking an unblocked fraction by X is the intersection
of the CIG of the unblocked fraction
with the CIG from blocking a full factorial by the same X.
Deciding on a good X is thus more complicated.
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Godolphin catalogues (blocks of size 22 = 4)

Resolution V paper catalogues of partitions for combinations of n, N, q and profiles (up to
128 runs with up to 11 factors).

Resolution IV paper catalogues of partitions for selected numbers of factors,
in some cases with additional information of additional 2fis that are
confounded already in the unblocked fraction,
for a few combinations of n, N, q and profiles

FrF2
• relieves practitioners from manual work with paper tables
• has a built-in algorithm that covers many situations
• allows R-savvy users to extend the situations for which blockings with

estimable 2fis can be found (e.g. also extending Godolphin’s paper catalogues)
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Algorithmic implementation in FrF2

Catalogue Unblocked fractions sorted from better to worse WLP, with design CIGs

Algorithm
1 loop through unblocked fractions, until one can accommodate the requirement

CIG (algorithm of Grömping 2012)
2 search for a suitable q × n matrix X for blocking that fraction without

sacrificing required 2fis (see next slide)
3 if one is found: record number of clear 2fis

if not maximum conceivable: try next X matrix
4 if X matrices have been found, use the one that keeps the largest number of

2fis clear;
otherwise, manually restart the first step after discarding the unusable
unblocked fraction
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Search algorithm for a suitable X

Crucial for
speed

It does not matter which column from Xq is used for which colour.

Denote Xq = {ξ1, . . . , ξ2q−1}, i.e. assign an order to the elements. Then
choose the columns of XI as follows:

• Fix the first column as ξ1 (one choice).
• If 2q − 1 ≥ 2, pick the second column from {ξ1, ξ2} (two choices);

otherwise pick it from Xq (21 − 1 = 1 choice).
• . . .
• If 2q − 1 ≥ c, pick the cth column from {ξ1, . . . , ξc}

(c choices);
otherwise pick it from Xq (2q − 1 choices).

• . . .
• If 2q − 1 ≥ k = n − p, pick the kth column from {ξ1, . . . , ξk}

(k choices);
otherwise pick it from Xq (2q − 1 choices).
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Some Timings for impossible requests

Times[s] from function FrF2 for attempting to block a suitable (k + p)–p fraction
into blocks of size 4, while keeping a clique of size 4 clear

k run size p = 0 p = 1 p = 2 p = 3 p = 4 p = 5 p = 6 p = 7 p = 8

5 32 0.12 0.12 0.13 0.02
6 64 0.32 0.28 0.23 0.23 0.30 0.23
7 128 0.91 0.75 0.64 0.53 0.47 0.58 0.66 0.41 0.43
8 256 2.67 2.46 1.97 1.63 1.39 1.15 0.99 0.90 0.82
9 512 8.64 7.16 5.89 5.19 4.06 3.56 3.24 3.05 2.91
10 1024 28.17 23.89 18.81 15.27 12.50 10.34 8.75 7.70 6.84
11 2048 91.36 72.41 59.92 48.57 40.22 33.42 27.35 22.61 18.86
12 4096 287.98 252.67 206.85 165.66 131.00 110.97 92.20 78.42 68.66
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Limitations

• Quality criteria for blocked designs are ignored - best (MA) unblocked fraction
with most clear 2fis is found.

• There are not enough catalogues for large fractions (and some are huge!).
• The need of a manual restart of the algorithm is a nuisance.
• Searches can take a long time.
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Concluding comments

• With Godolphin’s (2021) approach, it became feasible to automate blocking
with keeping a requirement set of 2fis clear.

• The approach is generally good for small blocks, even without a special
interest in clear 2fis.

• For fractional factorial 2-level designs, play with FrF2 and contact me in case
of questions etc.

• I am interested in application show cases.
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