An algorithm for blocking

regular fractional factorial 2 -level designs with clear two-factor interactions

Who? Ulrike Grömping
From? Beuth University of Applied Sciences, Berlin

> Full factorial 2-level designs

Blocking full factorials

Regular fractional factorial 2-level designs

Clear two-factor interactions

Back matter

Full factorial 2-level designs

Full factorial
2-level designs
Blocking full factorials

Regular fractional factorial 2-level designs

Clear
two-factor
interactions

Back matter

Basics

```
n treatment factors A,B,C,. . ,H,J,K,. . .
- each with levels 0 and 1 from GF(2),
and addition modulo 2
(used here)
- or each with levels -1 and +1, and multiplication
(closer to conventional industrial statistics,
automatically yields nice model matrices for estimation)
```


A full factorial has all 2^{n} conceivable level combinations.

```
A full model has \(2^{n}\) effects (1 constant, \(n\) main effects, \(\binom{n}{2} 2\)-factor interactions, ...).
```

Full model model matrix ($\mathrm{n}=4$ factors)

	0	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15
	I	\mathbf{A}	\mathbf{B}	AB	\mathbf{C}	AC	BC	ABC	\mathbf{D}	AD	BD	ABD	CD	ACD	BCD	ABCD
(1)	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{0}$	0	0	0	0	0	0	0
a	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{0}$	1	0	1	$\mathbf{0}$	1	0	1	0	1	0	1
b	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$	0	1	1	$\mathbf{0}$	0	1	1	0	0	1	1
ab	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{0}$	1	1	0	$\mathbf{0}$	1	1	0	0	1	1	0
c	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{1}$	1	1	1	$\mathbf{0}$	0	0	0	1	1	1	1
ac	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{0}$	1	0	1	1	0	1	0
bc	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{0}$	0	1	1	1	1	0	0
abc	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	$\mathbf{0}$	1	1	0	1	0	0	1
d	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{1}$	1	1	1	1	1	1	1
ad	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{0}$	1	0	1	$\mathbf{1}$	0	1	0	1	0	1	0
bd	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$	0	1	1	$\mathbf{1}$	1	0	0	1	1	0	0
abd	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{0}$	1	1	0	$\mathbf{1}$	0	0	1	1	0	0	1
cd	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1	0	0	0	0
acd	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	1	0	0	1	0	1
bcd	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{1}$	1	0	0	0	0	1	1
abcd	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	$\mathbf{1}$	0	0	1	0	1	1	0

Blocking full factorials

Full factorial
2-level designs
Blocking full factorials

Regular fractional factorial 2-level designs

Clear
two-factor interactions

Back matter

Basics

Purpose control for variation in the experimental material
Blocking $\quad N=2^{n}$ runs can be assigned to $N / 2^{q}=2^{n-q}$ blocks of size 2^{q}
has 2^{n-q} levels (needs $2^{n-q}-1 \mathrm{df}$)

Assumptions

- block effect active, but not of interest
- block factors do not interact with treatment factors
in line with Godolphin, look at only a single block factor

Blocking a full factorial in n factors

Approach of FrF2
pick $n-q$ independent effect columns for generating the levels of the block factor
e.g. for $n=4$ and $q=2: b_{1}=\mathrm{ABC}$ and $b_{2}=\mathrm{ABD}$

- the remaining dfs of the block factor are implied by the generating columns e.g. $b_{3}=\left(b_{1}+b_{2}\right) \bmod 2=(A B C+A B D) \bmod 2=C D$

Approach in • Godolphin (X approach)
pick q independent rows without all-zero columns that generate a group of size 2^{q},
which is the principal block (pb)
take the other blocks as the cosets of the principal block

X approach in detail

$q \times n$ matrix \mathbf{X}, rank q, no all-zero columns
Example continued

$$
\mathbf{X}=\underset{\mathrm{acd}}{\mathrm{bcd}}\left(\begin{array}{cccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \Longrightarrow \mathrm{pb}=\underset{\substack{\mathrm{acd} \\
\mathrm{ab}}}{\substack{(1)}}\left(\begin{array}{cccc}
A & B & C & D \\
0 & 0 & 0 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 0
\end{array}\right)
$$

Further blocks are the cosets:

$$
\begin{aligned}
& \mathrm{pb}+\mathrm{a}: \mathrm{a}, \mathrm{abcd}, \mathrm{~cd}, \mathrm{~b} \\
& \mathrm{pb}+\mathrm{c}: \mathrm{c}, \mathrm{bd}, \mathrm{ad}, \mathrm{abc} \\
& \mathrm{pb}+\mathrm{d}: \mathrm{d}, \mathrm{bc}, \mathrm{ac}, \mathrm{abd}
\end{aligned}
$$

Example: Blocking a full factorial

The four rows of the principal block for two different blockings of the full factorial in factors A, B, C and D.
Bold face: the $2 \times 4 \mathrm{X}$ matrix for the blocking.
The table shows columns for all factorial effects.

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	A	B	AB	C	AC	BC	ABC	D	AD	BD	ABD	CD	ACD	BCD	ABCD
blocking 1							b_{1}				b_{2}	b_{3}			
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	1	1	1	1	0	0	1	1	0	0	0	0	1	1
	1	0	1	1	0	1	0	1	0	1	0	0	1	0	1
	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
blocking 2			b_{1}		b_{2}	b_{3}									
	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
	1	1	0	1	0	0	1	0	1	1	0	1	0	0	1
	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0

Regular fractional factorial 2-level designs

Full factorial
2-level designs
Blocking full factorials

Regular fractional factorial 2-level designs

Clear
two-factor
interactions

Back matter

Regular fractions (unblocked)

A regular fraction (2^{p} th fraction of the 2^{n} run full factorial) has $N=2^{k}=2^{n-p}=2^{n} / 2^{p}$ level combinations.

Example

$$
\begin{aligned}
& n=6, p=2, k=n-p=4 \\
& N=16 \text { runs, design matrix } 16 \times 6, \text { model matrix } 16 \times 16
\end{aligned}
$$

- A regular fraction is obtainable from a full factorial in $k=n-p$ basic factors by $p>0$ defining contrasts, which declare the effects from the full model in the basic factors that define the levels of p additional factors.

Example: $\mathrm{E}=\mathrm{ABC}, \mathrm{F}=\mathrm{ABD}$

- Equivalently, there is a group theoretic creation approach (not discussed).

Full model model matrix ($\mathrm{n}=4$ basic factors)

	0	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15
	I	\mathbf{A}	\mathbf{B}	AB	\mathbf{C}	AC	BC	ABC	\mathbf{D}	AD	BD	$A B D$	CD	ACD	BCD	ABCD
(1)	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{0}$	0	0	0	0	0	0	0
a	$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{0}$	1	0	1	$\mathbf{0}$	1	0	1	0	1	0	1
b	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$	0	1	1	$\mathbf{0}$	0	1	1	0	0	1	1
ab	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{0}$	1	1	0	$\mathbf{0}$	1	1	0	0	1	1	0
c	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{1}$	1	1	1	$\mathbf{0}$	0	0	0	1	1	1	1
ac	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{0}$	1	0	1	1	0	1	0
bc	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{0}$	0	1	1	1	1	0	0
abc	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	$\mathbf{0}$	1	1	0	1	0	0	1
d	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{1}$	1	1	1	1	1	1	1
ad	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{0}$	1	0	1	$\mathbf{1}$	0	1	0	1	0	1	0
bd	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{0}$	0	1	1	$\mathbf{1}$	1	0	0	1	1	0	0
abd	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{0}$	1	1	0	$\mathbf{1}$	0	0	1	1	0	0	1
cd	1	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{1}$	1	1	1	$\mathbf{1}$	1	1	1	0	0	0	0
acd	1	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	1	0	0	1	0	1
bcd	1	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{1}$	1	0	0	0	0	1	1
abcd	1	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	$\mathbf{1}$	0	0	1	0	1	1	0

Regular fractions

Fractionating counfounds the 2^{n} effects of the full model in groups of 2^{p} effects that cannot be separated.

Example
Column headers for the model matrix
show the confounding pattern.

0	1	2	3	4	5	6	7
\mathbf{l}	\mathbf{A}	\mathbf{B}	$\mathbf{A B}$	\mathbf{C}	$\mathbf{A C}$	BC	ABC
ABCE	BCE	ACE	CE	ABE	BE	AE	E
ABDF	BDF	ADF	DF	ABCDF	BCDF	ACDF	CDF
CDEF	ACDEF	BCDEF	ABCDEF	DEF	ADEF	BDEF	ABDEF
8	9	10	11	12	13	14	15
\mathbf{D}	AD	BD	ABD	CD	ACD	BCD	ABCD
ABCDE	BCDE	ACDE	CDE	ABDE	BDE	ADE	DE
ABF	BF	AF	F	ABCF	BCF	ACF	CF
CEF	ACEF	BCEF	ABCEF	EF	AEF	BEF	ABEF

Group of words and resolution

Matrix notation for fractionating

Matrix notation for defining contrasts $E=A B C$ and $F=A B D$:

$$
\mathbf{Z}=\begin{gathered}
\mathrm{E} \\
\mathrm{~F}
\end{gathered}\left(\begin{array}{cccc}
\mathrm{A} & \mathrm{~B} & \mathrm{C} & \mathrm{D} \\
1 & 1 & 1 & 0 \\
1 & 1 & 0 & 1
\end{array}\right)
$$

\mathbf{Z} is used in Godolphin's blocking approach for fractional factorials.

Blocking a fractional factorial

n factors, $2^{k}=2^{n-p}$ runs, $p>0, k=n-p$ basic factors $q \times n$ matrix \mathbf{X} needed for creating $2^{q} \times n$ principal block

Change versus full factorial

Approach

Example: Previous X as
X_{1} with $E=A B C$ and $\mathrm{F}=\mathrm{ABD}$

Problem

Solution
cannot freely choose all n columns of \mathbf{X}, k columns for the basic factors determine the entire \mathbf{X}

Choose $q \times k$ matrix \mathbf{X}_{1}, calculate $q \times p$ matrix $\mathbf{X}_{I I}=\mathbf{X}_{1} \mathbf{Z}^{\top}$, and use $\mathbf{X}=\left(\mathbf{X}_{1}: \mathbf{X}_{\text {II }}\right)$.

$$
\mathbf{X}_{I}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \quad \text { and } \quad \mathbf{X}_{I I}=\mathbf{X}_{\mathbf{I}} \mathbf{Z}^{\top}=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)
$$

$\mathrm{X}_{\text {II }}$ may contain all-zero column(s)
\rightarrow treatment main effect(s) would be confounded with the block effect.
brute force search over all $\mathbf{X}_{\text {I }}$ for permissible blockings

Example: Blocking a fractional factorial

The four rows of the principal block for two different blockings of the fractional factorial with basic factors A, B, C and D and added factors $E=A B C$ and $F=A B D$.

Bold face: the $2 \times 6 \mathbf{X}$ matrix for the blocking: $\mathbf{X}=\left(\mathbf{X}_{I}: \mathbf{X}_{\|}\right)$

0	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15
\mathbf{l}	\mathbf{A}	\mathbf{B}	AB	\mathbf{C}	AC	BC	ABC	\mathbf{D}	AD	BD	ABD	CD	ACD	BCD	ABCD
							\mathbf{E}				\mathbf{F}				
blocking 1							b_{1}				b_{2}	b_{3}			
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{1}$	1	0	0	0	0	1	1
0	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	1	0	0	1	0	1
0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
blocking 2			b_{1}		b_{2}	b_{3}									
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{1}$	1	1	$\mathbf{1}$	1	1	1	1
0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	$\mathbf{1}$	$\mathbf{0}$	1	1	0	1	0	0	1
0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0

Clear two-factor interactions

Full factorial
2-level designs
Blocking full factorials

Regular fractional factorial 2-level designs

Clear two-factor interactions

Back matter

Clear 2fis

are not confounded with main effects or other 2 fis, and neither with the block factor

Situation

- other 2 fis may not be of interest, but must not be assumed negligible
- higher order interactions can be neglected

Goal fractionate and/or block such that required 2 fis are clear

Sources

- Grömping (2012) provided an algorithm for unblocked fractions
- Godolphin (2021) provided the relation of the \mathbf{X} approach to clear 2fis and a paper-catalogue for blocked fractions
- Grömping (2021) provided an automated algorithm for blocked fractions with clear 2fis, based on both Grömping (2012) and Godolphin (2021)

Clear interactions graphs (CIGs)

- each factor is the vertex of a graph
- there is an edge for each clear 2 fi

Design CIG of best fraction for six factors

Using CIGs

left: requirement CIG, right: design CIG (7-2.1)
Task allocate treatment factors such that required 2 fis are clear
Example allocate treatment factors A to G to design factors 1 to 7

- B, C and E must be on 4,5 and 7
\bullet
FrF2: subgraph isomorphism checks automate the allocation

X approach for full factorial revisited

χ_{q}

Important
Rule
Example:
Blocking 1

$$
\mathbf{X}=\left(\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

CD is confounded with blocks, the other five 2 fis are clear.

Approach

- For a specific 2 fi to be clear, assign different columns to its two factors.
- For a large number of clear 2fis, use the columns from χ_{q} in the highest possible balance \rightarrow see "profiles" below.

Example: X approach for full factorial

The four rows of the principal block for two different blockings of the full factorial in factors A, B, C and D.
Bold face: the $2 \times 4 \mathbf{X}$ matrix for the blocking.
Highlighted: 2fis confounded with blocks

0	$\mathbf{1}$	$\mathbf{2}$	3	$\mathbf{4}$	5	6	7	$\mathbf{8}$	9	10	11	12	13	14	15
\mathbf{l}	A	\mathbf{B}	AB	\mathbf{C}	AC	BC	ABC	\mathbf{D}	AD	BD	ABD	CD	ACD	BCD	ABCD
blocking	1							b_{1}				b_{2}	b_{3}		
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{1}$	1	$\mathbf{1}$	1	0	0	$\mathbf{1}$	1	0	0	0	0	1	1
0	$\mathbf{1}$	$\mathbf{0}$	1	$\mathbf{1}$	0	1	0	$\mathbf{1}$	0	1	0	0	1	0	1
0	1	1	0	0	1	1	0	0	1	1	0	0	1	1	0
\mathbf{l}	\mathbf{A}	\mathbf{B}	$A B$	\mathbf{C}	$A C$	$B C$	ABC	\mathbf{D}	AD	BD	ABD	CD	ACD	BCD	ABCD
blocking	2			b_{1}		b_{2}	b_{3}								
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	$\mathbf{0}$	$\mathbf{0}$	0	$\mathbf{0}$	0	0	0	$\mathbf{1}$	1	1	1	1	1	1	1
0	$\mathbf{1}$	$\mathbf{1}$	0	$\mathbf{1}$	0	0	1	$\mathbf{0}$	1	1	0	1	0	0	1
0	1	1	0	1	0	0	1	1	0	0	1	0	1	1	0

X approach for full factorial in graphs

- \mathbf{X} partitions the design factors into $2^{q}-1$ sets, whose 2 fis are confounded within sets (no edges), but not between sets (edges).
- The design CIG is a full 2^{q} - 1-partite graph for the partitions, and thus $2^{q}-1$ colourable.
- The sizes of the partition sets can be written in a profile, e.g. $\langle 5,5,3>$ or $\langle 9,3,1\rangle$.

Four 3-partite graphs for 13 factors

Profile < 7,5,1>
47 clear 2 fis

Profile <7,3,3>
51 clear 2 fis

Profile <9,3,1>

X approach for full factorial in graphs

A requirement CIG can be accommodated in blocks of size 2^{q}, if it is $2^{q}-1$-colourable.

Profile <3,3,1>

Requirement CIG that can be accommodated in blocks of size 4

X approach for fractional factorial revisited

For a given \mathbf{X}, the rule for confounding of 2fis with the block effect remains valid.

Resolution V If a suitable \mathbf{X} has been found, the CIG coincides with that of a full factorial fraction

Resolution IV fraction

2 fis may already be confounded with other 2 fis in the unblocked fraction.
The CIG from blocking an unblocked fraction by \mathbf{X} is the intersection of the CIG of the unblocked fraction
with the CIG from blocking a full factorial by the same \mathbf{X}. Deciding on a good \mathbf{X} is thus more complicated.

Godolphin catalogues (blocks of size $2^{2}=4$)

Resolution V

Resolution IV
paper catalogues of partitions for selected numbers of factors, in some cases with additional information of additional 2 fis that are confounded already in the unblocked fraction, for a few combinations of n, N, q and profiles

FrF2
\square allows R-savvy users to extend the situations for which blockings with estimable 2 fis can be found (e.g. also extending Godolphin's paper catalogues)

Algorithmic implementation in FrF2

Catalogue Unblocked fractions sorted from better to worse WLP, with design CIGs

Algorithm

loop through unblocked fractions, until one can accommodate the requirement CIG (algorithm of Grömping 2012)
search for a suitable $q \times n$ matrix \mathbf{X} for blocking that fraction without sacrificing required 2 fis (see next slide)
if one is found: record number of clear 2fis if not maximum conceivable: try next \mathbf{X} matrix
4 if \mathbf{X} matrices have been found, use the one that keeps the largest number of 2fis clear;
otherwise, manually restart the first step after discarding the unusable unblocked fraction

Search algorithm for a suitable X

Crucial for speed

It does not matter which column from \mathcal{X}_{q} is used for which colour.

Denote $\mathcal{X}_{q}=\left\{\xi_{1}, \ldots, \xi_{2^{q}-1}\right\}$, i.e. assign an order to the elements. Then choose the columns of \mathbf{X}_{I} as follows:

- Fix the first column as ξ_{1} (one choice).
- If $2^{q}-1 \geq 2$, pick the second column from $\left\{\xi_{1}, \xi_{2}\right\}$ (two choices); otherwise pick it from $\mathcal{X}_{q}\left(2^{1}-1=1\right.$ choice $)$.
- If $2^{q}-1 \geq c$, pick the c th column from $\left\{\xi_{1}, \ldots, \xi_{c}\right\}$ (c choices);
otherwise pick it from $\mathcal{X}_{q}\left(2^{q}-1\right.$ choices $)$.
- If $2^{q}-1 \geq k=n-p$, pick the k th column from $\left\{\xi_{1}, \ldots, \xi_{k}\right\}$ (k choices);
otherwise pick it from $\mathcal{X}_{q}\left(2^{q}-1\right.$ choices $)$.

Some Timings for impossible requests

Times[s] from function FrF2 for attempting to block a suitable $(k+p)-p$ fraction into blocks of size 4 , while keeping a clique of size 4 clear

k	run size	$p=0$	$p=1$	$p=2$	$p=3$	$p=4$	$p=5$	$p=6$	$p=7$	$p=8$
5	32	0.12	0.12	0.13	0.02					
6	64	0.32	0.28	0.23	0.23	0.30	0.23			
7	128	0.91	0.75	0.64	0.53	0.47	0.58	0.66	0.41	0.43
8	256	2.67	2.46	1.97	1.63	1.39	1.15	0.99	0.90	0.82
9	512	8.64	7.16	5.89	5.19	4.06	3.56	3.24	3.05	2.91
10	1024	28.17	23.89	18.81	15.27	12.50	10.34	8.75	7.70	6.84
11	2048	91.36	72.41	59.92	48.57	40.22	33.42	27.35	22.61	18.86
12	4096	287.98	252.67	206.85	165.66	131.00	110.97	92.20	78.42	68.66

Back matter

> Full factorial 2-level designs

Blocking full factorials

Regular fractional factorial 2-level designs

Clear two-factor interactions

Back matter

Limitations

- Quality criteria for blocked designs are ignored - best (MA) unblocked fraction with most clear 2fis is found.
- There are not enough catalogues for large fractions (and some are huge!).
- The need of a manual restart of the algorithm is a nuisance.
- Searches can take a long time.

Concluding comments

- With Godolphin's (2021) approach, it became feasible to automate blocking with keeping a requirement set of 2 fis clear.
- The approach is generally good for small blocks, even without a special interest in clear 2 fis.
- For fractional factorial 2-level designs, play with FrF2 and contact me in case of questions etc.
- I am interested in application show cases.

References

- Godolphin, J. (2021). Construction of blocked factorial designs to estimate main effects and selected two-factor interactions. JRSS B 83, 5-29. DOI: https://doi.org/10.1111/rssb. 12397.
- Grömping, U. (2007-2020). The FrF2 Package (Fractional Factorial designs with 2-level factors). R package version 2.2-2.
- Grömping, U. (2012). Creating clear designs: a graph-based algorithm and a catalog of clear compromise plans. IIE Transactions 44, 988-1001. DOI: https://doi.org/10.1080/0740817X.2012.654848.
- Grömping, U. (2021). An algorithm for blocking regular fractional factorial 2-level designs with clear two-factor interactions. Computational Statistics and Data Analysis 153, 1-18. DOI: https://doi.org/10.1016/j.csda.2020.107059.
- and references in these papers

