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Objectives

This lecture aims at

refreshing some basics of statistics

explaining decomposition of data into signal and noise

helping in understanding the data-structure emerging from litter
based experiments

presenting the amount of independent information provided by
clustered data

transferring concepts to quantal response case

understanding litter based approaches to quantal response data
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Statistical Basics in < 5 minutes

Decomposition of Data

data = signal + noise

y = µ + e, components unobservable

signal: µ assumed as fixed and real
noise : e assumed as random E (e) = 0, Var(e) = σ2

decomposition: yi = µ̂ + êi , i = 1, . . . , n by estimating components

goal: reliable estimate of signal including measure of precision.

precision of the mean, reached by a sample y1, . . . , yn of size n:

Var(y) =
σ2

n

Variance of the mean decreases with sample size.
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Statistical Basics in < 5 minutes

Data, Means, Confidence Intervals

example:1.94, 2.39, 0.29, 2.23, 2.56, 1.97, 2.23, 2.25, 2.57, 2.34, 2.41, 2.59, 2.20
1.70, 1.93, 2.26, 1.99, 2.37, 2.48, 1.62, 2.28, 2.84, 2.00, 2.43, 1.40
results : n = 25, µ̂ = y = 2.13 and σ̂ = 0.51
95% CI: y ± t0.975,n−1 × σ̂/

√
n = (1.92, 2.34)

Density of y and y 40 simulated confidence intervals α = 0.05
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Clustered Data in Teratology

Decomposition with Structured Noise

data = signal + noise

noise caused by litters bi and by fetuses eij

i = 1, . . . , I ; j = 1, . . . , ni for simplicity assume all ni equal

yij = µ + bi + eij , assumptions: bi , eij independent,
Ebi = Eeij = 0,Var(bi ) = σ2

b,Var(eij) = σ2.

data correlated within litters, no totally independent information

Corr(yij , yik) = σ2
b/(σ2

b + σ2) = ρ

Var(y ..) =
1

I

(
σ2

b +
σ2

n

)
=

1

l × n

(
1 + n × ρ

1− ρ

)
σ2

Intra-litter correlation causes variance inflation of the mean
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Example Litter Effect and Confidence Intervall

How intra-litter correlation changes inference

Data for 10 litters with 10 fetuses each are generated according to
different correlations ρ = 0, .25, .75, .95, keeping the total variance of a
single observation constant: Var(yij) = 1. Confidence intervals computed
using estimates σ̂2

b and σ̂2 from ANOVA decomposition.
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rho = 0.95

Confidence intervals get wider with increasing intra-litter correlation.
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Tolerance and Quantal Data

Distribution of individual tolerances determines response probabilities

Hypothetical tolerances for 50 individuals randomly assigned to 5 dose
groups.
Fit of quantal response model: Maximum Likelihood for binomial data.
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Quantal response allows indirect estimation of tolerance distribution
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Litter Effects for Tolerances

How intra-litter correlation changes pattern of reactions

Tolerances with litter effects, 10 fetuses for 10 litters. Increasing
intra-litter correlation.
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rho = 0.95

Litter effects increase dissimilarities of response rates between litters
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Example Litter Effect and Quantal Data

How intra-litter correlation changes distribution p = 0.5, 0.1
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Intra-litter correlation results in overdispersed number of reactions per litter
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Example Litter Effect and Quantal Data

How response probability changes distribution
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probability p 0.1 0.3 0.5 0.8

mean 1 3 5 8
variance 0.52 1.32 1.60 0.98

binomial variance 0.09 0.21 0.25 0.16
over-dispersion 5.73 6.30 6.41 6.11

Intra-litter correlations induces nearly constant overdispersion
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MNU Cleft palate induced by MNU

Raw data from Platzeck et al
dose reactions/litter size

P
ri /

P
ni litter effect

2 0/11 0/11 0/12 0/12 0/13 0/13 0/15 0/15 0/15 0
3 0/11 1/11 0/12 0/13 0/13 0/13 0/14 0/14 0/14 0.009 –

3.5 0/8 2/8 0/9 3/9 5/10 1/11 3/11 0/12 0/12 3/12 3/12 0/13 0/13 1/13 0/14 0.13 **
4 0/2 2/9 0/10 3/10 0/12 2/12 2/12 3/12 2/13 5/15 0.18 –
5 1/6 7/7 3/11 8/11 9/11 12/13 3/14 6/14 14/14 0.62 **
6 6/6 6/6 4/9 7/9 10/10 11/11 2/12 2/12 11/12 12/13 13/13 13/13 6/14 0.74 **

10 7/7 8/8 9/9 11/11 12/12 12/12 13/13 14/14 1
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Results: slightly decreasing litter size, increase in response rate
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MNU Cleft palate induced by MNU

How different treatment of litter-effect changes fit

Beta-Binomial Regression modified sample sizes Logistic Regression
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litter effects cause weighted fit to data
ignoring litter effects gives too narrow confidence bands
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MNU Cleft palate induced by MNU

How different treatment of litter-effect changes benchmarks

Beta-Binomial Regression modified sample sizes Logistic Regression
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beta binomial fit recommended
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Conclusions

Rôle of litter-effects for data analysis in teratology

Quantitative data

Precision: Variance of the mean decreases with sample size.

Litters: Intra-litter correlation causes variance inflation of the mean.

Confidence intervals get wider with increasing intra-litter correlation.

Qualitative data – quantal reponse

Quantal response allows indirect estimation of tolerance distribution.

Litter effects increase dissimilarities of response rates between litters.

Intra-litter correlation results in overdispersed number of reactions per litter.

Intra-litter correlations induces nearly constant overdispersion.

Litter effects cause weighted fit to data.

Selected method influences value and width of confidence interval,beta binomial
regression with constant overdispersion recommended.
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