Statistische Beurteilung von Dosiswirkungsbeziehungen

Reinhard Meister

Beuth Hochschule Berlin

Agenda

algae bacteria bees butterflies bugs cell-cultures cucumber daphniae dogs ducks fish guinea-pigs hen's eggs humans limb-buds mice rabbits rats whole-embryo worms yeast zebrafish-embryos

Some Construction Lots

- Quantal response (quasi) complete separation
- Teratology clustered data
- Time is Information time-dose-response models
- A general Risk Measure

Data and Model data $(d_i, r_i, n_i), i = 1, \dots, k;$ $d_1 < d_2 < \dots < d_k$ distribution $r_i \sim binom(\pi_i, n_i)$ model $\pi_i = p(d_i);$ $F^{-1}(\pi) = \alpha + \beta d = \frac{\mu - d}{\sigma} = \frac{ED_{0.5} - d}{c (ED_{0.5} - ED_q)}$ likelihood $L(model|data) = \prod_{i=1}^k {r_i \choose n_i} \pi_i^{r_i} (1 - \pi_i)^{n_i - r_i}$

Quantal Response - (quasi) complete separation

Separated Data monotonicity $r_1/n_1 \le r_2/n_2 \le \cdots \le r_k/n_k$ complete $\max_i r_i (n_i - r_i) = 0$ quasi complete $\exists i^* : \max_{i \ne i^*} r_i (n_i - r_i) = 0, \quad r_{i^*} (n_{i^*} - r_{i^*}) > 0$

complete quasi quasi overlap

Quantal Response – Likelihood

Quantal Response – Benchmarks

Likelihood intervals under separation new parameters $(\alpha, \beta) \rightarrow \theta = (ED_q, ED_{0.5})$ LR-statistic $LR(\theta) = L(\theta) / \sup L$ complete sep. $LR(\theta) = L(\theta) = P(data|\theta)$ quasi complete $Dev(\theta) = -2 \log\{L(\theta) / dbinom(r_{i^*}, n_{i^*}, r_{i^*} / n_{i^*})\} \sim \chi^2_{k-2}$

Reinhard Meister (Beuth Hochschule Berlin)

Quantal Response – Benchmarks

Results Example BD01, $\alpha = 0.05$

- assume logistic model with $ED_{0.5} = 2.5$, $ED_{0.01} = 2$ then $P(\bigcup data) \approx 1$, P(overlap) = 0.008
- benchmarks appear reasonable
- ATTENTION! choice of model is crucial

Dose-Response Studies

- treat pregnant animals (rodents), randomized to dose groups
- record no. of implantations, resorptions, anomalies, etc per litter
- rather large litters, 8-15 in mice and rats

Yamaguchi et al, PNAS June 23, 1998 vol. 95 no. 13 7491-7496

Decomposition with Structured Noise

- data = signal + noise
- noise caused by litters b_i and by fetuses e_{ij} $i = 1, ..., I; j = 1, ..., n_i$ for simplicity assume all n_i equal
- $y_{ij} = \mu + b_i + e_{ij}$, assumptions: b_i, e_{ij} independent, $Eb_i = Ee_{ij} = 0, Var(b_i) = \sigma_b^2, Var(e_{ij}) = \sigma^2.$
- data correlated within litters, no totally independent information

$$Corr(y_{ij}, y_{ik}) = \sigma_b^2 / (\sigma_b^2 + \sigma^2) = \rho$$
$$Var(\overline{y}_{..}) = \frac{1}{I} \left(\sigma_b^2 + \frac{\sigma^2}{n} \right) = \frac{1}{I \times n} \left(1 + n \times \frac{\rho}{1 - \rho} \right) \sigma^2$$

WILLIAM

Intra-litter correlation causes variance inflation of the mean

Distribution of individual tolerances determines response probabilities

Hypothetical tolerances for 50 individuals randomly assigned to 5 dose groups.

Fit of quantal response model: Maximum Likelihood for binomial data.

How intra-litter correlation changes pattern of reactions

Tolerances with litter effects, 10 fetuses for 10 litters. Increasing intra-litter correlation.

Litter effects increase dissimilarities of response rates between litters

Raw data from Platzeck et al

dose	reactions/litter size	$\sum r_i / \sum n_i$	litter effect
2	0/11 0/11 0/12 0/12 0/13 0/13 0/15 0/15 0/15	0	
3	0/11 1/11 0/12 0/13 0/13 0/13 0/14 0/14 0/14	0.009	-
3.5	0/8 2/8 0/9 3/9 5/10 1/11 3/11 0/12 0/12 3/12 3/12 0/13 0/13 1/13 0/14	0.13	**
4	0/2 2/9 0/10 3/10 0/12 2/12 2/12 3/12 2/13 5/15	0.18	-
5	1/6 7/7 3/11 8/11 9/11 12/13 3/14 6/14 14/14	0.62	**
6	6/6 6/6 4/9 7/9 10/10 11/11 2/12 2/12 11/12 12/13 13/13 13/13 6/14	0.74	**
10	7/7 8/8 9/9 11/11 12/12 12/12 13/13 14/14	1	

dose

Results: slightly decreasing litter size, increase in response rate

Simulations Litter Effect and Quantal Data

How intra-litter correlation changes distribution

p = 0.5, 0.1

Simulations Litter Effect and Quantal Data

How response probability changes distribution

probability <i>p</i>	0.1	0.3	0.5	0.8
mean	1	3	5	8
variance	0.52	1.32	1.60	0.98
binomial variance	0.09	0.21	0.25	0.16
over-dispersion	5.73	6.30	6.41	6.11

WID WID WID

Intra-litter correlations induces nearly constant overdispersion

Reinhard Meister (Beuth Hochschule Berlin)

Dosis Wirkung

Raw data from Platzeck et al(1988)

The Teratogenic Potency of MNU in Mice. Arch. Toxicol. 62: 411-423

dose	reactions/litter size	$\sum r_i / \sum n_i$	litter effect
2	0/11 0/11 0/12 0/12 0/13 0/13 0/15 0/15 0/15	0	
3	0/11 1/11 0/12 0/13 0/13 0/13 0/14 0/14 0/14	0.009	-
3.5	0/8 2/8 0/9 3/9 5/10 1/11 3/11 0/12 0/12 3/12 3/12 0/13 0/13 1/13 0/14	0.13	**
4	0/2 2/9 0/10 3/10 0/12 2/12 2/12 3/12 2/13 5/15	0.18	-
5	1/6 7/7 3/11 8/11 9/11 12/13 3/14 6/14 14/14	0.62	**
6	6/6 6/6 4/9 7/9 10/10 11/11 2/12 2/12 11/12 12/13 13/13 13/13 6/14	0.74	**
10	7/7 8/8 9/9 11/11 12/12 12/12 13/13 14/14	1	

Results: slightly decreasing litter size, increase in response rate

How different treatment of litter-effect changes fit

litter effects cause weighted fit to data ignoring litter effects gives too narrow confidence bands

Reinhard Meister (Beuth Hochschule Berlin)

Dosis Wirkung

How different treatment of litter-effect changes benchmarks

Reinhard Meister (Beuth Hochschule Berlin)

Dosis Wirkung

More Information Time-Dose-Response Models

Example Labour Induction in Guinea-Pigs

	Time (days post conception)								
Dose	44	45	46	47	48	49	50	> 50	Total
10	0	0	1	0	2	1	0	3	7
30	1	0	1	1	2	1	0	1	7
100	0	4	1	2	0	0	0	0	7

Time to first abortion by dose of a Progesterone Antagonist (mg/a/d). Data from Elger (1999), pers. commun.

More Information Time-Dose-Response Models

Example: Moskito Fish (Newman/Huscher)

Zeitintervall bis		Konzentration (in ppt)						
Tod (in h)	0	10.3	10.8	11.6	13.2	15.8	20.1	Total
(8]	- 0	0	0	- 0	- 0	9	-77	86
(8 - 16]	- 0	- 0 -	- 0	- 0 -	- 0	26	- 0 -	26
(16 - 24]	0	0	0	- 0	- 3	28	0	31
(24 - 32]	-0	- 0	0	1	10	11	- 0 -	22
(32 - 40]	- 0	- 0	2	2	10	2	- 0 -	16
(40 - 48]	- 0	5	6	8	-10	2	- 0	31
(48 - 56]	- 0	2	2	- 9	-10	0	0	23
(56 - 64]	0	2	5	4	10	0	- 0	21
(64 - 72]	- 0	3	3	7	5	0	- 0 -	18
(72 - 80]	- 0	1	0	2	6	- 0	- 0	9
(80 - 88]	- 0	2	0	3	4	- 0	- 0	9
(88 - 96]	0	1	4	4	1	0	0	10
zensiert	78	60	-57	37	7	- 0	- 0 -	239
Total	78	76	79	77	76	78	-77	541

Dörte Huscher (1999) Diploma Thesis TFH Berlin

"Statistische Methoden der Risikoabschätzung bei zeitabhängiger Exposition"

Data: Types of Recording

- C (quasi) continuous
- D discrete
- G grouped (interval censored)

Analysis: Types of Models

- parametric models C D G accelerated failure time glm with f(time) as covariate
- semi parametric models
 Cox prop hazard C (D)
 glm for ordered categorical G

Choice of model defines type of dose-relation.

Example: Moskito Fish (Newman/Huscher)

fit: glm ordered categorical link=cloglog, $c^{2.1}$ \rightarrow prop. hazard link=logit, $c^{2.8}$ \rightarrow prop. odds

 $S(t_i) = 1 - link^{-1}(\alpha_i + \beta \ c^k); \ t_i \in \{8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96\}$

General Measure of Risk

differential effects

data Let $X_i \sim F_i$, i = 1, 2 be independent. Small values indicating *bad* state.

effect
$$p(X_1, X_2) = P(X_2 < X_1) + (1/2)P(X_2 = X_1)$$

= $\int F_2(x)dF_1(x)$

modified version of F for discontinuous distributions .

origin Brunner, Akritas differential treatment effect

differential effects are invariant under strictly monotonous transformations

differential effects for selected models
normal data
$$X_i \sim \Phi(\mu_i, \sigma^2), i = 1, 2$$

 $p(X_1, X_2) = \Phi\{(\mu_1 - \mu_2)/(\sqrt{2}\sigma)\}$

prop. hazards
$$1 - F_2(x) = \{1 - F_1(x)\}^{\gamma}$$

 $p(X_1, X_2) = \gamma/(\gamma + 1)$

binary data
$$X_i \sim B(1,q_i), i = 1,2$$

 $p(X_1,X_2) = (1/2) + (1/2)(p_2 - p_1)$

differential effects are easily expressed as function of parameters

Dose-Response for Differential Effects

data $X_1 = X(0)$ controls, $X_2 = X(d)$ exposed normalize $\pi(d) = 2\{p(X(0), X(d)) - 1/2\}$ normal data $\pi(d) = 2(\Phi\{(\mu(0) - \mu(d))/(\sqrt{2}\sigma)\} - 1/2)$ prop.hazard $\pi(d) = \{\gamma(d) - 1\}/\{\gamma(d) + 1\}$ binary data $\pi(d) = p(d) - p(0)$

normalized differential effects define risk function

Benchmark Doses for Normalized Differential Effects parametric models use plug-in estimates of model parameters ordered categorical use rank-sum estimate: $\widehat{\pi}(d) = 2[(1/n_d)\{(1/n_0)\sum_{i=1}^{n_0} R_{0,i} - (n_0 + 1)/2\} - (1/2)]$ conf. bounds as usual, delta method, profile likelihood, bootstrap

benchmarks can be derived for differential effects

Example: Moskito Fish (Newman/Huscher)

- Benchmarks can be derived for quantal response data when (quasi) complete separation occurs. ATTENTION model dependence
- Simple simulation is a good tool for analyzing clustered binary data. Beta-binomial regression provides reliable models for teratological data.
- Event history modeling extracts more and better information than quantal response approach.
- Stochastic order expressed by normalized differential effects is a suitable general measure of risk.

Frohe Adventszeit

Zhu Y, Wang T, Jelsovsky JZ. Bootstrap estimation of benchmark doses and confidence limits with clustered quantal data. Risk Anal. 2007 Apr;27(2):447-65. Pang Z, Kuk AY. Test of marginal compatibility and smoothing methods for exchangeable binary data with unequal cluster sizes. Biometrics. 2007 Mar;63(1):218-27. Pang Z, Kuk AY. A shared response model for clustered binary data in developmental toxicity studies. Biometrics. 2005 Dec;61(4):1076-84. Hunt D, Rai SN. Testing threshold and hormesis in a random effects dose-response model applied to developmental toxicity data. Biom J. 2005 Jun;47(3):319-28. Regan MM, Catalano PJ. Regression models and risk estimation for mixed discrete and continuous outcomes in developmental toxicology. Risk Anal. 2000 Jun;20(3):363-76. Regan MM, Catalano PJ. Likelihood models for clustered binary and continuous outcomes: application to developmental toxicology. Biometrics. 1999 Sep;55(3):760-8. Ryan L, Molenberghs G. Statistical methods for developmental toxicity. Analysis of clustered multivariate binary data. Ann N Y Acad Sci. 1999;895:196-211. Morel JG, Neerchal NK. Clustered binary logistic regression in teratology data using a finite mixture distribution. Stat Med. 1997 Dec 30;16(24):2843-53.

Schuster C, Meister R. Benchmarks for Quantitative Endpoints: An Approach Accounting for Litter Effects. Communications in Statistics. 1996; 25(12):3085-99 Fung KY, Krewski D, Rao JN, Scott AJ. Tests for trend in developmental toxicity experiments with correlated binary data. Risk Anal. 1994 Aug;14(4):639-48. Ryan L. Using historical controls in the analysis of developmental toxicity data.

Biometrics. 1993 Dec;49(4):1126-35.

- Carr GJ, Portier CJ. An evaluation of some methods for fitting dose-response models to quantal-response developmental toxicology data. Biometrics. 1993 Sep;49(3):779-91.
- Ryan L. The use of generalized estimating equations for risk assessment in developmental toxicity. Risk Anal. 1992 Sep;12(3):439-47. Review.
- Ryan L. Quantitative risk assessment for developmental toxicity. Biometrics. 1992 Mar;48(1):163-74.
- Piegorsch WW, Haseman JK. Statistical methods for analyzing developmental toxicity data. Teratog Carcinog Mutagen. 1991;11(3):115-33. Review
- Williams DA. Estimation bias using the beta-binomial distribution in teratology. Biometrics. 1988 Mar;44(1):305-9.

Nelson CJ, Felton RP, Kimmel CA, Buelke-Sam J, Adams J. Collaborative Behavioral Teratology Study: statistical approach. Neurobehav Toxicol Teratol. 1985 Nov-Dec;7(6):587-90.

Shirley EA, Hickling R. An evaluation of some statistical methods for analysing numbers of abnormalities found amongst litters in teratology studies. Biometrics. 1981 Dec;37(4):819-29.

Crowder MJ. Beta-binomial Anova for proportions. Applied Statistics. 1978;27: 34-37. Kupper LL, Haseman JK. The use of a correlated binomial model for the analysis of certain toxicological experiments. Biometrics. 1978 Mar;34(1):69-76.

Holson JF, Scott WJ, Gaylor DW, Wilson JG. Reduced interlitter variability in rats resulting from a restricted mating period, and reassessment of the litter effect". Teratology. 1976 Oct;14(2):135-41.

Haseman JK, Hogan MD. Selection of the experimental unit in teratology studies. Teratology. 1975 Oct;12(2):165-71.

Healy MRC. Animal Litters as Experimental Units. J. Royal Stat. Soc. (Series C), Applied Statistics. 1972;21(2): 155-159.

