
Multi-task Learning with
AdapterFusion

Master Thesis of

Anjali Grover
MATRICULATION NUMBER: 901129

Beuth University of Applied Sciences, Berlin
Department VI - Data Science

Data Science and Text-based Information Systems (DATEXIS)

First Reviewer: Prof. Dr.-Ing. habil. Alexander Löser
Second Reviewer: Prof. Dr. rer. nat. Felix Bießmann
Advisor: Betty van Aken

August 26, 2021

i

Abstract

This work aims to make progress in developing Clinical Decision Support Systems
by improving patient outcome predictions. We work towards further improving
the recent progress made by Aken et al., 2021 (CORe) on clinical outcome predic-
tions. Clinical outcome tasks use the patient’s admission notes to predict outcomes
like Diagnosis at discharge, procedures performed, in-hospital mortality, and pa-
tient’s length of stay at the hospital. The knowledge of these outcomes can help
medical professionals not overlook risks and plan hospital capacities. We compare
and evaluate traditional multi-task learning methods against the novel approach of
AdapterFusion on clinical outcome tasks to solve the challenges faced by the CORe
approach. We present that the traditional multi-task method best predicts the proce-
dures (% AUROC: 90.50). However, we observe worse performance on other tasks
using Multi-task learning as it suffers from catastrophic interference problem. We
further show that AdapterFusion suffers from an overfitting problem on extreme
multi-label tasks: Diagnosis and Procedures. A detailed analysis reveals a high class
variability in the dataset as a plausible reason for the poor performance of Adapter-
Fusion models. On the other hand, we find that Single-task Adapters surpass base-
lines on Diagnosis (% AUROC: 83.98) and Length of Stay task (% AUROC: 75.45)
and perform on par with the CORe approach on Procedures and Mortality Predic-
tion. Additionally, Single-task adapters help solve problems like high training time
and high resource usage faced by the traditional fine-tuned transformer-based mod-
els.

iii

Contents

1 Introduction 1
1.1 Objective . 1
1.2 Motivation . 2
1.3 Outline . 4

2 Background and Related Work 6
2.1 Transfer Learning . 6

2.1.1 BERT (Bidirectional Encoder Representations from Transform-
ers) . 6

2.1.2 BioBERT (Bidirectional Encoder Representations from Trans-
formers for Biomedical Text Mining) 8

2.1.3 CORe (Clinical Outcome Representations) 9
2.2 Multi-Task Learning . 11
2.3 Adapter Modules . 12
2.4 Adapter Fusion . 13
2.5 Summary . 15

3 Methodology 17
3.1 Problem Definition . 17
3.2 Data Pre-Processing & Distribution . 17

3.2.1 MIMIC III (Medical Information Mart for Intensive Care) 17
3.3 Our Approach . 20

Traditional Multi-task Learning 21
Single Task Adapters (ST-A) . 22
AdapterFusion . 22

3.4 Evaluation Metrics . 23
3.5 Summary . 25

4 Implementation 27
4.1 Experimental Environment . 27

4.1.1 Implementing Transformers . 27
Hugging Face . 27

4.1.2 Multi-task Learning . 28
FARM . 28
Adaptive Model with FARM . 28

iv

Data Processing with FARM . 29
4.1.3 Single-task Adapters and Adapter Fusion 29

Adapter-Transformers . 29
4.2 Hyperparameter Optimization (HPO) 30

4.2.1 ASHA . 32
4.2.2 Ray Tune . 33

4.3 Summary . 33

5 Benchmark, Evaluation, and Discussion 34
5.1 Hypothesis . 34
5.2 Baseline Models . 34
5.3 Results . 35

5.3.1 Experimental Setup . 35
5.3.2 Multi-task Learning . 35

Hyperparameter Analysis for Multi-task learning experiments 37
5.3.3 AdapterFusion . 38
5.3.4 Summary . 39

5.4 Error Analysis . 40
5.4.1 Quantitative Error Analysis . 40

Diagnosis . 40
Procedures . 41
Mortality . 42
Length of Stay . 42

5.4.2 Qualitative Error Analysis . 43
Attention Plots for AdapterFusion 43

5.4.3 Analysis of Diagnosis codes . 45
5.5 Discussion . 46
5.6 Summary . 48

6 Conclusion and Future Work 49
6.1 Summary . 49
6.2 Future Work . 50

Bibliography 52

1

Chapter 1

Introduction

"Imagine if a doctor can get all the information she needs about a patient in 2 minutes and
spend the next 13 minutes of a 15-minute office visit talking with the patient, instead of
spending 13 minutes looking for information and 2 minutes talking with the patient."

In his book Deep Medicine, Eric Topol quotes Lynda Chin, a world-renowned cancer
genomics scientist (Topol, 2019). Eric Topol is an American cardiologist and provides
various examples to explain how shallow medicine practiced these days is detrimen-
tal to patients’ health. He refers to shallow medicine as scenarios where the medical
professionals spend little time with patients to understand their actual problems.

As per research (Irving et al., 2017), primary care doctor visits last less than five min-
utes for half of the world’s population. It has further been associated with poorer
health for patients and burnout for doctors. Moreover, as per another study (Singh,
Meyer, and Thomas, 2014), 12 million people are misdiagnosed every year in the
U.S.A. alone. The misdiagnosis leads to the death of 40,000 - 80,000 people annually.
However, as Eric Topol explains in Deep Medicine, this problem can be solved us-
ing AI-based clinical decision support (CDS) systems. CDS uses Electronic Health
Records (EHRs) of the patients and supports the doctors in pinpointing certain risk
factors. It helps the medical professionals not overlook potential risks and focus on
the patient’s treatment instead of spending the entire time of an appointment adding
data into the systems.

Therefore, in this work, we focus on predicting clinical outcome predictions using
Electronic Health Records, which we hope can help the medical community in the
future.

1.1 Objective

This work is based upon the novel task setup proposed by Aken et al., 2021 for
clinical outcome prediction that simulates the patient’s admission state and predicts

Chapter 1. Introduction 2

the outcome of the current admission. The four clinical outcome tasks we focus on
in this work include:

1. Diagnosis prediction In this task, we predict the patient’s diagnosis using the
admission notes. It is a primary task of clinical outcome predictions to support
medical professionals with differential diagnoses.

2. Procedure prediction With this task, we predict different procedures that can
be used to treat the patient. The knowledge of Diagnosis and Procedures at the
time of patient admission can help doctors not overlook risks.

3. In-hospital mortality prediction In this work, we also predict the patient’s
mortality during the admission time. This knowledge can help the medical
professionals in ICUs with making optimal clinical decisions

4. Length-of-stay prediction Lastly, in this work, we predict the length of a pa-
tient’s stay in the hospital. It can help the medical staff in planning the hospital
resources.

In Aken et al., 2021, the authors proposed the Clinical Outcome Representations
(CORe) to integrate patient trajectories into the pre-trained transformer-based mod-
els.

They trained four separate models for each task and surpassed various existing base-
lines. However, the CORe approach posed high training time, high resource usage,
and plausible overfitting problems. Additionally, as the tasks are trained separately,
it is hard to understand if one task can help the second task improve its performance.
Therefore, we experiment with Traditional Multi-task learning and AdapterFusion
to overcome the challenges posed by the CORe approach.

1.2 Motivation

Multi-task Learning In Multi-task learning, we train one single model that pre-
dicts multiple tasks in parallel. It has been adapted from how human beings learn
in their day-to-day lives. We discuss the different methods of Multi-task learning in
detail in Chapter 2.

Advantages of Multi-task Learning In our work, which aims to improve the per-
formance on clinical outcome prediction tasks using the CORe model, we present the
following points that motivate us to incorporate Multi-task Learning in our work:

• Reduced Risk of Overfitting
To solve clinical outcome tasks, the authors of the CORe model create separate
models for each of the four tasks. Thus, the models tend to learn on training
data too well and reduce performance on the unseen data. However, with the

Chapter 1. Introduction 3

multi-task learning approach, as the model aims to create representations that
generalize each task, the risk of overfitting is reduced.

• Shared Representations
With the approach of creating different models for all of the downstream tasks,
we completely ignore the possibility of the four tasks learning from each other.
Instead, through Multi-task learning, we aim to understand if a particular pre-
diction for Task 1 can help it predict the outcome for Task 2.
For example, Can a Diagnosis of Heart Failure help the model understand the in-
crease in the patient’s mortality rate?

• Low Training Time and Resource usage
Creating different models for each task also leads to high training time and re-
sources. In this work, we tackle this problem using Multi-task learning meth-
ods. Only one model is trained in a multi-task setup, so the model size and
training time is low. Additionally, it helps in reducing the inference time,
which is advantageous for hospitals with limited resources.

Challenges Indeed, Multi-task learning helps us resolve some of the critical chal-
lenges we face using the one model for one task approach. However, it also leads to
some of the problems which we discuss below:

• Catastrophic Interference
Catastrophic interference, also known as Catastrophic forgetting, is a process
where the deep neural networks forget the old parameters on learning new
parameters (McCloskey and Cohen, 1989). As a Multi-task learning setup in-
volves the model learning new parameters from each task, the model can start
forgetting its old parameters as more and more tasks are included in the setup.
Hence, it is difficult for the model to perform equally well on each task with
multi-task learning.

• Retraining for new tasks
It is challenging to introduce new tasks in a multi-task setup, as complete re-
training of the model is required. It involves finding the shared representations
of the tasks again using techniques such as hyperparameter optimization.

AdapterFusion To overcome the challenges presented by the traditional multi-
task learning methods, we explore a novel way of training tasks using Adapter-
Fusion (Pfeiffer et al., 2021). We use Single-task Adapters with Fusion for our ex-
periments and have been discussed in detail in Chapter 2. In brief, AdapterFusion
employs compact and extensible Adapter modules. Adapter modules (Houlsby et
al., 2019) use very few trainable parameters compared to the fully fine-tuned models,
which leads to less training time without compromising the model’s performance.
AdapterFusion is a technique that helps find relevant task adapters for the target

Chapter 1. Introduction 4

task. For example, AdapterFusion may help us find out if the adapter for the Proce-
dures task is relevant in improving the performance of the Diagnosis task.

Motivation to use AdapterFusion AdapterFusion is the central part of our work in
predicting clinical outcome tasks; we have dedicated this section to demonstrate our
motivation for using AdapterFusion and comparing it with the traditional multi-task
learning approach. We have listed below some of the critical points that inspired us
to explore AdapterFusion in the clinical domain:

• Low usage of Resources
With AdapterFusion, we have the flexibility to save only the weights of the
fusion parameters after training the model, which dramatically decreases the
storage space required to save the model. It directly solves the problem we
have when training a separate model for each downstream task.

• Mitigation of Catastrophic Interference
To evaluate if AdapterFusion resolves the problem of catastrophic interference
posed by multi-task learning, the authors compared the performance of Sin-
gle Task Adapters and Multi-task Adapters with the Fusion process (Figure
2.8). They presented that AdapterFusion improves the performance on the
downstream task with both ST-A and MT-A. Therefore, AdapterFusion solves
the problem of catastrophic forgetting posed by traditional Multi-task learning
methods.

• No Retraining is required for new tasks
As discussed in the previous section, Multi-task training requires simultaneous
access to all the tasks. Thus, complete retraining is required when adding new
tasks to the setup. The Single-Task AdapterFusion proposed by the authors
solves this problem, as no complete joint retraining is required on adding new
tasks.

To conclude, we aim to improve upon the progress made by the CORe approach
in predicting clinical outcome tasks, namely, Diagnosis, Procedure, Mortality, and
Length of Stay of the patient. We compare the Traditional Multi-task learning method
with the novel AdapterFusion approach and evaluate them on challenges faced by
the CORe approach.

1.3 Outline

This thesis is structured into six chapters. Chapter 2 lays the theoretical founda-
tions. It presents the taxonomy of Transfer Learning in NLP and discusses the per-
formance and architecture of the baseline models. We also discuss in detail different
Multi-task learning approaches and architectures for Adapter modules and Adapter-
Fusion. Chapter 3 introduces our methodology, which overviews the downstream

Chapter 1. Introduction 5

tasks, datasets, and evaluation metrics. Chapter 4 presents our implementations in
detail, while Chapter 5 shows our experiments, evaluates and discusses them. In the
end, Chapter 6 concludes and gives an outlook of possible future work.

6

Chapter 2

Background and Related Work

This chapter explicates Transfer learning and pre-trained language models such as
BERT, BioBERT, and CORe, which are the underlying paradigm of this work. We
further illustrate traditional Multi-task learning methods and compare them with
the novel approach of AdapterFusion. As our work is based upon evaluating the
Multi-task Learning approach and AdapterFusion on clinical tasks, we also refer to
their architecture details and the results presented by the respective authors.

2.1 Transfer Learning

In his thesis Ruder, 2019 aptly describes Transfer Learning by comparing it with clas-
sic supervised learning. He explains that if we desire to solve a task from domain
D in supervised learning tasks, we are provided with the labeled data for the same
task. However, the supervised learning paradigm breaks down when we do not
have sufficient labeled data. In these scenarios, Transfer learning allows the usage
of a related task or domain and transfers the knowledge to the target task. Further-
more, Ruder, 2019 introduces us to the taxonomy for Transfer Learning for NLP as
depicted in Figure 2.1.

Our work focuses on Inductive Transfer learning and performs various experiments
to compare Sequential Learning with Multi-task learning methods. We would first
introduce sequential transfer learning where a pre-trained model M on task A is
further fine-tuned to make predictions on task B. Next, we would discuss Multi-
task learning, where, unlike sequential transfer learning, tasks are trained simulta-
neously to gain knowledge from each other and make better predictions. The fol-
lowing sections would further elucidate the workings of transfer learning and some
of the pre-trained models used in our work.

2.1.1 BERT (Bidirectional Encoder Representations from Transformers)

Google AI introduced BERT (Devlin et al., 2019) to produce state-of-the-art results on
a wide variety of Natural Language Processing tasks, including Question Answering

Chapter 2. Background and Related Work 7

FIGURE 2.1: A taxonomy for transfer learning for NLP Ruder, 2019,
p. 64

(SQuAD v1.1), Natural Language Inference (MNLI), and others. Moreover, Google
has also been using BERT to understand user searches better since 2019 Nayak, 2019.

BERT utilizes the concept of contextual relationships between word tokens from
models such as ELMo (Peters et al., 2018) and ULMFit (Howard and Ruder, 2018).
However, unlike other models, BERT is deeply bidirectional,i.e., it learns informa-
tion from both the left and right sides of a token’s context during the training. Ad-
ditionally, BERT is pre-trained using large text corpora from BooksCorpus (800M
words) and English Wikipedia (2,500M words).

BERT Architecture The Transformers model includes an encoder that takes a sen-
tence as an input and a decoder that predicts the target task in its vanilla form. BERT,
on the other hand, is a multi-layer bidirectional Transformer encoder. In their paper,
the authors of BERT introduced the NLP community to two model sizes BERTBASE

and BERTLARGE. Table 2.1 represents the difference in the architectures of both mod-
els.

Model L H A Total Parameters

BERTBASE 12 768 12 110 M
BERTLARGE 24 1024 16 340 M

TABLE 2.1: Architecture details for BERTBASE and BERTLARGE mod-
els. L represents the number of layers, H means the hidden size and

A represents the number of attention heads (Devlin et al., 2019).

BERT Input/Output Representation BERT’s input representation is constructed
using the sum of the token, segment, and position embeddings. A visualization of

Chapter 2. Background and Related Work 8

FIGURE 2.2: Encoder-based BERT Models. BERTBASE(left) includes
12 layers of encoders, and BERTLARGE (right) contains 24 layers.

(Alammar, 2018)

this construct is represented in Figure 2.3. As per the authors, an input sequence in
BERT can be any contiguous text rather than a linguistic text. The sentences are sep-
arated from each other using the [SEP] token. The first token of each input sequence
is [CLS], a Classification token representing the aggregated sequence representation
to predict classification tasks. The authors of BERT essentially used two strategic
unsupervised tasks to pre-train the model, which are discussed below:

Masked Language Model Standard Conditional models such as RNN and LSTM
are trained either left-to-right or right-to-left because bi-directional conditioning would
indirectly allow each word to see itself. Therefore, the authors of BERT used a
novel idea of randomly masking 15% of the input words in a sequence and using
the masked words’ position to predict the input token.

Next Sentence Prediction In order to help BERT understand the relationship be-
tween different sentences, the authors used a binary next sentence prediction task to
pre-train BERT. They chose sentences A and B for this task so that 50% of the time,
sentence B followed A (labeled as IsNext), and the other 50% of the time, they used
a random sentence from the corpus (labeled as NotNext). They demonstrated that
pre-training BERT using this task was highly beneficial for Question Answering and
Natural Language Inference tasks.

2.1.2 BioBERT (Bidirectional Encoder Representations from Transform-
ers for Biomedical Text Mining)

BioBERT (Lee et al., 2019) is a variant of BERTBASE, pre-trained on the biomedical
domain corpora, unlike the original BERT model, which was trained using general
domain texts such as Wikipedia. The authors of BioBERT used publicly available re-
sources like PubMed Abstracts (4.5 B words) and PubMed Central Full-text articles

Chapter 2. Background and Related Work 9

(13.5 B words) to incorporate biomedical knowledge into the model. BioBERT es-
sentially helped the NLP community focused on biomedical tasks to get better word
representations for bio-medical text. The authors demonstrated in their research
that BioBERT achieved state-of-the-art performance on various biomedical text min-
ing tasks. For example, BioBERT achieved higher F1 scores in biomedical NER (0.62)
and biomedical RE (2.80) and a higher MRR score (12.24) in biomedical QA than the
previous state-of-the-art models.

FIGURE 2.3: BERT input representation. The input embeddings are
the sum of the token embeddings, the segmentation embeddings, and

the position embeddings.Devlin et al., 2019

2.1.3 CORe (Clinical Outcome Representations)

Our work is primarily based upon the improvements made by the CORe model
(Aken et al., 2021). The authors of CORe proposed Clinical Outcome Represen-
tations to integrate the patient representations into existing language models. We
discuss their approach and its success in detail in the next section.

FIGURE 2.4: The CORe Approach (Aken et al., 2021)

CORe Approach Clinical Outcome Representations are created by pre-training on
top of BioBERT weights. The idea behind the approach was to incorporate clinical
knowledge to build a specialized model for outcome prediction. The authors used a
new task setup related to the Next Sentence prediction task (Devlin et al., 2019) for
the model to understand the relationship between patient admissions and outcomes.
The task setup is specialized in inserting knowledge about clinical outcomes. As vi-
sualized in Figure 2.4, the patient’s clinical notes were used to create Admission and
Discharge sections. For 50% of the samples used for training, the correct Discharge
section was followed by the Admission section (labeled as True). For the other 50%

Chapter 2. Background and Related Work 10

samples, a negative sampling was applied (labeled as False). A similar procedure
was used for medical articles where symptoms/risk factors replaced admissions,
and discharge sections were replaced by treatments/prognosis.

Data Sources The authors of CORe used publicly available data to integrate patient
and medical knowledge. They essentially divided their sources into two groups:
Patients and Articles. It is inspired by the fact that doctors too learn from previous
patients and medical literature.
CORe’s Patients data source includes:

1. 32,721 discharge summaries from the MIMIC III training set

2. 5,000 publicly available medical transcriptions from the MTSamples website 2

3. 4,777 clinical notes from the i2b2 challenges 2006-2012

And, Articles are composed of:

1. 9,335 case reports from PubMed Central (PMC)

2. 2,632 articles from Wikipedia describing diseases

3. 1,467 article sections from the MedQuAd dataset extracted from NIH websites
such as cancer.gov

Furthermore, the authors extracted admission and discharge sections from the above-
mentioned data sources. For structured datasets such as MIMIC III, the rule-based
approach was used to extract the required sections, whereas, for unstructured datasets
like i2b2, a classifier proposed by Rosenthal, Barker, and Liang, 2019 was utilized.

CORe’s Performance Table 2.2 represents the performance of CORe against base-
lines models on four clinical outcome prediction tasks. Our work primarily uses this
model as the CORe model outperforms all existing baseline models for predicting
clinical tasks. In addition, we employ novel approaches using multi-task learning to
further improve upon the results of the CORe model in the following sections.

Diagnosis Procedures In-Hospital Mortality Length-of-Stay
(1266 classes) (711 classes) (2 classes) (4 classes)

Bag of Words 75.87 77.47 79.15 65.83
Embeddings 75.16 76.72 79.94 66.78
CNN 61.18 73.13 75.50 64.49

BERT Base 82.08 85.84 81.13 70.40
Clinical BERT 81.09 86.15 82.20 71.14
Discharge BERT 82.86 87.09 84.51 71.73
BioBERT Base 82.81 86.36 82.55 71.59

CORe Articles 83.46 87.43 83.64 71.99
CORe Patients 83.41 88.37 83.60 71.96
CORe All 83.54 87.65 84.04 72.53

TABLE 2.2: Performance of CORe models against existing baselines in
macro-averaged % AUROC. The CORe models outperform the base-

lines. This table is derived from Aken et al., 2021

Chapter 2. Background and Related Work 11

2.2 Multi-Task Learning

The concept of Multi-task learning in Deep learning has been adapted from how hu-
man beings learn in general. On a day-to-day basis, we use the knowledge gained
from the related tasks to learn new tasks. For example, from a programmer’s per-
spective, we use concepts like functional programming from languages like C and
C++ and apply the same understanding and skills when learning Java or Python. It
works the same when learning a human language; for example, the knowledge one
gains from learning Sanskrit can help the person learn Hindi faster and better.

Generally, In Machine Learning, we train a single model to perform the desired task.
We use techniques such as Hyperparameter Optimization to find the best parameters
for the model designed to solve a specific task. This method of focusing on a single
task to train a model provides optimum results in most cases (Ruder, 2017); however,
we lose information from the training signals of the related tasks. By sharing repre-
sentation with related tasks, we can train our model to achieve higher performance
on the target task (Ruder, 2017)

Hard-Parameter Sharing Hard-Parameter sharing is the most commonly used multi-
task learning setup in Deep learning. The hidden layers between all the tasks are
shared in this setup, whereas the task-specific layers are kept separate. Thus, it dra-
matically reduces the risk of overfitting; as more tasks are included in the setup, the
model aims to find parameters representing all the tasks. Figure 2.5 presents a visual
representation of the parameter sharing between different layers. Our work uses the
Hard-parameter sharing method to evaluate traditional Multi-task Learning for pre-
dicting clinical tasks.

FIGURE 2.5: Commonly used Multi-task learning methods
(Ruder, 2017)

Soft-Parameter Sharing Unlike Hard Parameter sharing, the Soft Parameter shar-
ing method involves creating a separate model with separate parameters for each
task. Most commonly, techniques like regularization are used to keep the distance
between the parameters of different models low. As Hard-Parameter Sharing is the

Chapter 2. Background and Related Work 12

most commonly used method for Multi-Task Learning, we use just that for our ex-
periments.

As discussed in Chapter 1, Multi-task learning helps us in reducing the risk of over-
fitting, understanding shared representations amongst different tasks, and leads to
lower resource usage than the CORe approach. However, Multi-task learning also
pose challenges like catastrophic interference.

To overcome the challenges presented by the traditional multi-task learning meth-
ods, we explore a novel way of training tasks using AdapterFusion (Pfeiffer et al.,
2021), which is discussed in the following sections. However, before we discuss
AdapterFusion, it is essential to understand the Adapter Modules and their archi-
tecture.

FIGURE 2.6: The left side represents the presence of the adapter mod-
ules twice in each transformer layer. The right side of the figure rep-
resents the adapter layer. The adapter consists of a bottleneck that
contains few parameters relative to the attention and feedforward
layers in the original model. Only the green layers are trained on
the target task during adapter training, including the adapter, layer-
normalization parameters, and the final classification layer. (Houlsby

et al., 2019)

2.3 Adapter Modules

Houlsby et al., 2019 demonstrated Adapter Modules, a compact and extensible trans-
fer learning method in NLP. The authors presented Adapter Modules as an alterna-
tive to scenarios where a new model is required for each downstream task. A stan-
dard fine-tuning process involves copying the parameters of the pre-trained model
and tuning them to the downstream task. However, in cases where multiple down-
stream tasks are involved, the creation of each model is inefficient as it involves train-
ing millions of parameters per task. The idea behind the efficiency of the Adapters
is that they require only a few parameters per task. The Adapter modules inject new

Chapter 2. Background and Related Work 13

parameters of dimension m to each transformer layer (Figure 2.6, left side) and keep
the original parameters of the pre-trained model with dimension d intact, where
m«d. During the training process with Adapter modules, only the adapter modules
are changed.

As shown in Figure 2.6- right side, the adapters project the original feature size into
a smaller dimension and then project it into the original size. Thus, it ensures that
the number of parameters remains substantially small compared to the original pre-
trained model.

In experiments with 26 diverse text classification tasks, the authors of Adapter Mod-
ules demonstrated that adapters yield stable performance even when substantially
fewer parameters are used. For example, as shown in Figure 2.7, the performance
of Adapter modules is better or similar to those of BERT models using only 3.6% of
parameters per task, whereas fully fine-tuned models use 100% of the parameters.

FIGURE 2.7: Accuracy versus the number of trained parameters ag-
gregated across tasks. The authors compare adapters of different sizes
(orange) with fine-tuning the top n layers for varying n (blue). The
lines and shaded areas indicate the 20th, 50th, and 80th percentiles

across tasks.(Houlsby et al., 2019)

2.4 Adapter Fusion

In 2021, AdapterFusion (Pfeiffer et al., 2021) was proposed to maximize knowledge
transfer across tasks without suffering from the same problems as sequential fine-
tuning and multi-task learning. Our work is inspired by the high performance of the
AdapterFusion approach on a wide range of tasks, as shown in Figure 2.8. The au-
thors of AdapterFusion experimented with two approaches for the Fusion Process:
Fusion with Single-Task Adapters (ST-A) and Fusion with Multi-task Adapters (MT-A).
Fusion with ST-A refers to training adapters of different tasks separately and using
them for the fusion process. Fusion with MT-A involves training adapters simulta-
neously with a multi-task objective and employs the fusion process as a next step.
We further discuss the intrinsic details of the Adapter Fusion in the following sec-
tions.

Chapter 2. Background and Related Work 14

FIGURE 2.8: Relative performance difference of the two adapter
architectures and the AdapterFusion models over fully fine-tuned
BERT. Fusion improves over its corresponding adapters (ST-A and

MT-A) for most tasks. (Pfeiffer et al., 2021)

Knowledge Extraction It is the first step in the AdapterFusion process where the
adapters modules are trained separately for each task or in a multi-task setup. Our
work focuses mainly on Single Task Adapters (ST-A), as it is demonstrated as the
most efficient approach by the authors to share knowledge across all tasks. There-
fore, for our work, we first train four adapter modules separately for each clinical
outcome task.

In single task adapters, for each of the N tasks, the model is first initialized with
parameters Θ0. Additionally, as discussed in the previous section, randomly ini-
tialized adapter parameters Φn are introduced. During the training process, only
adapter parameters, Φn, are used, and the original parameters, Θ0, are kept intact.
The objective for each task is to find the optimum weights for adapter parameters
which would minimize the training loss. Mathematically, it can be represented in
the following form:

Φn ← argmin
Φ

[Ln(Dn; Θ0, Φ)]

where Dn represents the data,
Ln represents the training loss,
Φn represents the adapter parameters
Θ0 represents the original parameters of the pre-trained model

Knowledge Combination Knowledge Combination is the second step involved in
the AdapterFusion process. In this novel step, the authors of AdapterFusion com-
bine the adapters from the first step to overcome challenges such as catastrophic
interference and training instabilities. They introduce Ψ that learns to combine N
adapters to solve the target task. Mathematically, it is represented in the following
form:

Ψm ← argmin
Ψ

[Lm(Dm; Θ, Φ1, ..., Φn, Ψ)]

where Ψm are the AdapterFusion parameters of task m,
Θ represents the original parameters of the pre-trained model and refers to Θ0 from
the Knowledge Extraction step.

Inspired by attention modules (Vaswani et al., 2017) in the transformers model, the
authors of AdapterFusion use the same concept to find the contextual activation

Chapter 2. Background and Related Work 15

of each adapter. As shown in Figure 2.9a, the AdapterFusion parameters consist
of the Key, Query, and Value vectors. The query takes as input the output of the
pre-trained transformer weights. Additionally, both Key and Value take as input
the output of the respective adapters. Finally, the dot product of the query with
all the keys is passed into a softmax function, which learns to weigh the adapters
with respect to the context. Additionally, Figure 2.9b represents the AdapterFusion
architecture inside a Transformer layer. The AdapterFusion component can be seen
taking as input the representations of multiple adapters trained on different tasks
and learning a parameterized mixer of the encoded information.

(A) AdapterFusion Architecture. (Pfeif-
fer et al., 2021)

(B) AdapterFusion architecture inside a
Transformer. (Pfeiffer et al., 2021)

2.5 Summary

This chapter first presented the taxonomy of Transfer learning in NLP and empha-
sized the focus of this work, i.e., Sequential Transfer Learning and Multi-task learn-
ing. It then explicates the underlying paradigm models of this work, i.e., BERT,
BioBERT, and the CORe approach. The chapter discussed the architecture and pre-
training process of BERT and provided a brief introduction to BioBERT, a variant of
BERT pre-trained on biomedical text. As our work is entirely based on the CORe
approach’s improvements on clinical outcome tasks, the chapter explained in detail
its architecture and the pre-training process to integrate patient characteristics into
the model. Furthermore, the chapter details the central part of this work, Multi-task
Learning and AdapterFusion. The chapter first introduces the Multi-task learning
process, its commonly used methods, advantages, and challenges. It focuses on the
fact that Multi-task learning can help us overcome some of the challenges (Overfit-
ting, High Training time, and Resource usage) posed when training a separate model
for each clinical outcome task. Next, to overcome the challenges posed by Multi-task

Chapter 2. Background and Related Work 16

learning, we discuss the Fusion process and its performance on various tasks, which
motivated us to apply it for our experiments on clinical tasks.

17

Chapter 3

Methodology

This chapter first focuses on detailing the problem description of our work. It dis-
cusses the data source used by us for the experiments, i.e., MIMIC III. It also sheds
light on data pre-processing and the distribution of the class labels. Followed by
the data pre-processing and distribution, this chapter details our approach to solve
the problem, explaining how we use Multi-task learning and AdapterFusion for our
experiments. Lastly, it describes the evaluation metrics used to measure our experi-
ments.

3.1 Problem Definition

This work aims to improve the predictions made by the CORe approach (Aken et al.,
2021) for clinical outcome predictions. In addition, our focus is to overcome prob-
lems such as overfitting, high training time, and resources. Moreover, the goal is to
understand if a particular prediction for Task 1 can help it predict the outcome for
Task 2. For example, can a Diagnosis of Arthritis help the model understand the procedures
required to operate it?
We utilize clinical notes from MIMIC III for our experiments, a publicly available
data source (Johnson, Pollard, and Shen, 2016, detailed overview in section 3.2.1).
As represented in Figure 3.1 , we input the patients’ clinical notes at admission, in-
cluding their present illness, allergies, social & family history. Then, we use that
information to train a model to predict four outcomes at discharge: Diagnosis, Pro-
cedures, In-Hospital Mortality, and Length of Stay of the patient.

3.2 Data Pre-Processing & Distribution

3.2.1 MIMIC III (Medical Information Mart for Intensive Care)

MIMIC III is a publicly available database (under a data use agreement) comprising
information relating to patients admitted to critical care units at Beth Israel Dea-
coness Medical Center in Boston, Massachusetts (Johnson, Pollard, and Shen, 2016).
This version was released in 2016 and is an update of the MIMIC II (Lee et al., 2011).

Chapter 3. Methodology 18

FIGURE 3.1: Admission to discharge sample demonstrating the out-
come prediction task. (Aken et al., 2021)

MIMIC III data spans over a decade (2001 to 2012) and includes deidentified hospital
admission information for 53,423 patients. It covers patient characteristics such as
vital signs, medications, laboratory measurements, observations and notes charted
by care providers, fluid balance, procedure codes, diagnostic codes, imaging reports,
hospital length of Stay, survival data, and more. The MIMIC dataset was released
to boost clinical research and education around the world. As a result, much re-
search has been conducted using this data source. For example, Si and Roberts, 2019
use MIMIC III’s clinical notes to propose a deep learning-based multi-task learning
(MTL) architecture focusing on patient mortality predictions. Additionally, Sebas-
tiano Barbieri, 2020 uses MIMIC III for predicting patient readmission to the ICU.

MIMIC III is provided as a collection of comma-separated value (CSV) files, in addi-
tion to the scripts to import the data directly into database systems like PostgreSQL
and MySQL.

Admission Notes The Admission notes refer to the patient information a doctor
has access to during the hospital admission time. It includes information such as
Chief Complaint, Present Illness, Medical History, Admission Medications, Allergies, Phys-
ical exam, Family history, and Social History of the patients. We directly utilize the
Admission notes created by Aken et al., 2021 from the MIMIC III data for the CORe
approach. The authors of CORe used the following approach to extract Admission
notes from MIMIC III:
The NOTESEVENTS.csv file from MIMIC III includes a clinical note (TEXT) for each
Admission (HADM_ID) and Patient (SUBJECT_ID). The file also includes a CATE-
GORY column to extract only the "Discharge Summaries" for the Admissions. Fur-
ther, using rule-based approaches, the authors of CORe extracted the relevant ad-
mission sections from the Discharge Summary Text. Figure 3.2 visualizes a sam-
ple Admission note used for our experiments. It has been derived from the public
demonstration website1 of Aken et al., 2021 and is not from the original MIMIC III
data but of similar style and content.

1 https://outcome-prediction.demo.datexis.com/

Chapter 3. Methodology 19

FIGURE 3.2: Sample Admission Note used for predicting clinical out-
come tasks. The sample text is different from the actual text in MIMIC
III data and has been derived from the public demonstration website

of Aken et al., 2021.

Labels Like Admission notes, we use the class labels pre-processed by Aken et al.,
2021 from MIIC III directly. The authors of CORe use the following approach to ex-
tract the labels for each clinical outcome task:
The diagnosis information corresponding to a patient’s admission is retrieved using
the DIAGNOSES_ICD.CSV file from MIMIC III. It includes ICD-9 diagnosis codes
corresponding to each Admission and Patient. Similarly, ICD-9 codes for Proce-
dures can be extracted using the PROCEDURES_ICD.CSV file from MIMIC III. ICD-
9 codes (International Statistical Classification of Diseases and Related Health Prob-
lems,WHO, 1975) are the standardized numerical codes, first introduced by the
World Health organization in 1975 to identify diseases, symptoms, medical proce-
dures, and more. It is important to note that ICD-9 code length can vary from three
to five digits. The length of ICD-9 codes identifies the granularity of the information
they hold. Therefore, five-digit codes would include more specific information of
diagnosis than a three- digit code. Moreover, there can be more than just one Diag-
nosis and Procedures ICD-9 code for an Admission ID.
For the Mortality label, "HOSPITAL_EXPIRE_FLAG" from file ADMISSIONS.CSV
is used; a value of 1 presents that the patient died during the hospitalization, and
0 represents that the patient did not die. Length of Stay label is created by calcu-
lating the difference between the DISCHTIME (Discharge Time) and ADMITTIME
(Admission Time).

After pre-processing the MIMIC data, a single CSV is retained, including the clinical
note and the corresponding Diagnosis, procedures, mortality prediction, and length
of stay labels (Figure 3.3).

Data Distribution After pre-processing the MIMIC III data, CORe authors further
employ a patient-wise split into train, validation, and test set with a 70/10/20 ratio.
Figure 3.4 shows the statistics related to the Admission notes in MIMIC III data. Our
work directly uses the dataset split created for CORe.

Chapter 3. Methodology 20

Diagnosis & Procedures As mentioned in section 3.2.1, ICD-9 codes range from
three to five digits assigned to a unique category. Aken et al., 2021, groups the ICD-9
diagnosis codes from 4- into 3-digit codes to reduce complexity resulting in 1,266
diagnosis codes. Similarly, ICD-9 procedures codes were grouped into 3-digit codes.
As represented in Figures 3.5a and 3.5b, the distribution of ICD-9 diagnosis codes
and procedure codes follow power law and are extreme multi-label classification
tasks. In addition, Figure 3.6 show the count of ICD-9 codes for Diagnosis and Pro-
cedures per dataset split.

Mortality & Length of Stay The Length of Stay label was split into four major
categories: Under three days, three to seven days, one week to two weeks, and more
than two weeks. As only 10% of the data in MIMIC III indicates that the patient died
in the hospital (labeled as 1), mortality prediction is a highly imbalanced binary
classification task. Figure 3.7 shows the distribution of Length of Stay and Mortality
per dataset split.

3.3 Our Approach

As discussed in Chapter 2, we perform experiments to evaluate the Traditional Multi-
Task Learning approach compared to the AdapterFusion in order to predict clinical
outcome tasks. To summarize, via Multi-task Learning, we aim to understand the
shared representations between the four tasks, reduce the risk of overfitting and re-
duce the storage resources and training time. However, Multi-task learning can lead
to catastrophic interference, worsening the performance on different tasks. On the
other hand, AdapterFusion aims to mitigate catastrophic interference in addition to
low training time and resource usage. We employ CORe as our underlying model
for both setups, as it currently outperforms all existing baselines for predicting the
novel clinical outcome tasks. We further discuss the methodology used to experi-
ment with Multi-task Learning and AdapterFusion.

FIGURE 3.3: Sample format of data after pre-processing. TEXT col-
umn includes the Admission notes for the patients. Diagnosis, Proce-
dures, Mortality, and Length of Stay represent the labels for the four

clinical outcome tasks.

Chapter 3. Methodology 21

FIGURE 3.4: Numbers of words / sentences in MIMIC III admission
notes. (Aken et al., 2021)

(A) Distribution of ICD-9 Diagnosis codes.
(Aken et al., 2021)

(B) Distribution of ICD-9 Procedures codes.
(Aken et al., 2021)

Traditional Multi-task Learning

To better understand how Multi-task Learning affects the performance amongst the
four tasks, we adopted the approach of including tasks in the experiments step by
step. For example, we first start with a pair-wise experiment, including Diagnosis
and Procedures. Then, in the next experiment, we add a third task to the experiment:
Mortality Prediction. It helps us understand how related the tasks are to each other.
If the performance of Diagnosis and Procedures peaks when in the setup together
but decreases on introducing the Mortality prediction task, it clarifies if Mortality
prediction task can help predict Diagnosis/Procedures task better.
In total, we perform eight different experiments using the traditional multi-task
learning method including the following task settings:

1. Diagnosis - Procedures

2. Diagnosis - Length of Stay

3. Diagnosis - Mortality

4. Procedures - Length of Stay

5. Procedures - Mortality

6. Diagnosis - Procedures - Mortality

7. Diagnosis - Procedures - Length of
Stay

8. Diagnosis - Procedures - Mortality
- Length of Stay

Please note that we do not perform experiments including just Mortality Prediction
and Length of Stay in a setting, as admissions resulting in the patient’s death would
not have a label for the Length of Stay task. Therefore, a model would not learn addi-
tional parameters for better prediction in the "Length of Stay - Mortality Prediction"
task setting.

Chapter 3. Methodology 22

FIGURE 3.6: Distribution of ICD-9 codes per dataset split (patient-
wise).

FIGURE 3.7: Distribution of Mortality and Length of Stay labels per
dataset split (patient-wise).

Single Task Adapters (ST-A)

As discussed in Section 2.3, Adapters are lightweight, modular, and flexible. Before
creating AdapterFusion models for each task, we create four Single-Task Adapters
for each clinical outcome tasks. As the authors of Pfeiffer et al., 2021 recommended
Fusion with Single-Task Adapters over Fusion with Multi-Task Adapters due to its
high flexibility and high performance, we employ it for our experiments. In single
task adapters, for each of the N tasks, the model is first initialized with parameters
Θ0. Additionally, randomly initialized adapter parameters Φn are introduced. Dur-
ing the training process, only adapter parameters, Φn, are used, and the original
parameters, Θ0, are kept intact. The objective for each task is to find the optimum
weights for adapter parameters which would minimize the training loss. Mathemat-
ically, it can be represented in the following form:

Φn ← argmin
Φ

[Ln(Dn; Θ0, Φ)]

where Dn represents the data,
Ln represents the training loss,
Φn represents the adapter parameters
Θ0 represents the original parameters of the pre-trained model

AdapterFusion

After creating ST-A for the four clinical tasks, we next utilize them for the Adapter-
Fusion process. Inspired by attention modules (Vaswani et al., 2017) in the trans-
formers model, the authors of AdapterFusion use the same concept to find the con-
textual activation of each adapter. They use Key, Query, and Value vectors to find the
most relevant adapter of the related task at each layer. This in turn helps improve
the performance on the target tasks.
For example: In AdapterFusion model for Diagnosis task, Diagnosis is the target
task and the other tasks are the related tasks. The related tasks, i.e., Procedures,

Chapter 3. Methodology 23

Mortalitty, and Length of Stay aim to help increase the performance of the target
task using the AdapterFusion process. More information on AdapterFusion’s archi-
tecture is included in Section 2.4.

3.4 Evaluation Metrics

To measure the performance of our experiments against the CORe approach, we pri-
marily use AUROC. However, before discussing AUROC, we introduce other eval-
uation metrics for classification tasks such as Precision, Recall, F1, and Confusion
Matrix. We avail them in Chapter 5 for the Error Analysis of our experiments.

Confusion Matrix As represented in Figure 3.8, a confusion matrix is a table that
helps us assess the performance of a model on the test data for a classification task.
The four quadrants in the matrix represent True Negatives (TN), False Positives (FP),
False Negatives(FN), and True Positives (TP).

FIGURE 3.8: Confusion Matrix for a binary classification task. Rows
present the actual labels, and columns present the models’ predic-
tions. The four quadrants represent true negative (TN), false positive

(FP), true positive (TP), and false negative (FN) (Anello, 2021)

For example, if the task involves predicting the mortality of a patient, i.e., a binary
classification task (label: 1/0). In this scenario, "True positives" represents the num-
ber of samples against which the model correctly predicted the patient would die
during the hospitalization. "False positives" depicts the number of admission sam-
ples for which the model wrongly classified the patient would die during the hospi-
talization. Similarly, "True Negatives" represent the proportion of samples correctly
classified as negative and "False Negative" depicts the number of positive examples
that the model incorrectly classified as negative.

All of the above-mentioned terms are further used to describe metrics such as Preci-
sion, Recall, F1 score, and AUROC.

Chapter 3. Methodology 24

Precision It represents the accuracy of the positive predictions, i.e., the proportion
of accurately classified samples out of all the records classified as positive.

Precision =
TP

TP + FP

Recall It is also known as True Positive rate, and expresses the proportion of actual
positives identified correctly:

Recall =
TP

TP + FN

Generally, the evaluation metric is used according to the use case of the prediction
task. In some cases, it is essential to reduce false positives, in which case we evalu-
ate the precision metric. In other cases, it is crucial to identify all the positive cases
correctly, hence, it is required to evaluate the Recall. However, it can be challenging
to keep track of multiple evaluation metrics when it is vital to reduce both False Pos-
itives and False Negatives.

F1 score helps evaluate the models where the goal is to balance False Positives and
False Negatives. F1 score is the harmonic mean of Precision and Recall and is repre-
sented using the following expression:

F1 = 2 ∗ Precision ∗ Recall
Precision + Recall

Macro and Micro Average We use Macro and Macro averages of the above-mentioned
metrics in Chapter 5 for evaluating and comparing our different models. They are
instrumental when dealing with multi-class labels, like in the case of our tasks.
In the calculation of Macro Average, equal weight is provided to each class and the
results are averaged over each class in the data. However, For Micro average, a
weighted average is calculated, and the weight depends on the distribution of the
classes. More weight is provided to the class with a higher number of samples. Mi-
cro averages are of vital importance in the datasets with high class imbalance. Macro
average and Micro average for a metric provide the same results for datasets includ-
ing classes with equal distribution.

AUROC We essentially use AUROC to measure the performance of our experi-
ments for a lateral comparison with the CORe approach. The AUROC is calculated
as the area under the ROC curve. A ROC curve (Receiver Operating Characteris-
tic Curve) shows the trade-off between True Positive Rate (TPR)/Recall and False
Positive Rate (FPR) across different decision thresholds. It helps us understand our
model’s performance against a random classifier.

False Positive rate (FPR) is expressed as,

Chapter 3. Methodology 25

FIGURE 3.9: A sample ROC curve, Draelos, 2019

FPR =
FP

FP + TN

For a random classifier, AUROC is 0.5 (Area under the Red line, Figure 3.9) and is
the worst score. The best AUROC score is 1.0 (Area under the purple line, Figure
3.9), representing that the model can discriminate between the positive and nega-
tive sample correctly. An AUROC less than 0.70 is sub-optimal performance, 0.70 –
0.80 and greater than 0.80 are considered as good and excellent performance, respec-
tively.

We would discuss the above-mentioned evaluation metrics at length to measure the
performance of our experiments in Chapter 5

3.5 Summary

In this chapter, we first reiterated the goal of our work, i.e., to experiment with Multi-
task Learning and AdapterFusion for better predictions on clinical outcome tasks.
Next, it described our approach to solve this problem, i.e., we add tasks step by step
in our experiments for Traditional Multi-task learning. Moreover, for the Adapter-
Fusion process, we utilize "Fusion with Single-task Adapters" for its high flexibility
and performance. Furthermore, we introduced our data source, MIMIC III, and
elucidated the data pre-processing process. Additionally, we represented the data
distribution of the labels and their split into the Train, Validation, and Test datasets.
The data distribution helped interpret the imbalance of the classes for all four clin-
ical outcome tasks. Lastly, we discussed evaluation metrics used by us to measure

Chapter 3. Methodology 26

the performance of our experiments, namely, Precision, Recall, F1 score, Confusion
Matrix, and AUROC.

27

Chapter 4

Implementation

In this chapter, we will focus on explaining the environment of our experiments, and
the python libraries we used to build our models. Additionally, we will explain the
Hyperparameter Optimization process for our experiments.

4.1 Experimental Environment

For our experiments, we use the DATEXIS Kubernetes cluster. It consists of 30 nodes
with about 2,288 CPU cores, where some nodes are additionally equipped with
GPUs. In total, there are 8 Nvidia Tesla K80, 8 Nvidia Tesla P100, 9 Nvidia Tesla
V100, and 17 DGX A100 GPUs. Our experiments are executed with one Nvidia Tesla
V100 GPU or using two Nvidia Tesla P100 GPUs.We use Docker containers based on
Python version 3.7.5, CUDA13 version 10.1, and PyTorch version 1.6.0.

4.1.1 Implementing Transformers

Hugging Face

Hugging Face1 is an open-source provider of Natural language processing tech-
nologies. The libraries we use for implementing Traditional Multi-task learning
and AdapterFusion are based upon the Transformers library 2 from Hugging Face.
Transformers library provides general-purpose architectures for Natural Language
Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pre-
trained models in 100+ languages. Additionally, the Hugging Face Hub allows re-
searchers worldwide to share their models and datasets freely with each other.

In further sections, we describe the open-source libraries we use for Multi-task learn-
ing and the AdapterFusion process.

1 https://huggingface.co/
2 https://huggingface.co/transformers/

Chapter 4. Implementation 28

FIGURE 4.1: The Adaptive model architecture from FARM

4.1.2 Multi-task Learning

FARM

We use FARM v0.5.0 3 to implement our traditional multi-task learning experiments
using a hard-parameter sharing method. FARM is also an open-source library for
NLP. FARM is built upon the Transformers library and provides additional features
to simplify transfer learning implementation and debugging for developers. FARM
provides full Compatibility with HuggingFace Transformers’ models and model
hub.

Adaptive Model with FARM

FARM was an optimal choice for us to implement Multi-task learning due to its
Modular design of language models and prediction Heads. Figure 4.1 depicts FARM’s
flexibility of using one language model (for example, BERT) with multiple predic-
tion heads to form an Adaptive Model.

• The Language model represents their class to include any pre-trained model
such as BERT, BioBERT, CORE which convert word tokens from the text corpus
into a vector representation.

• The Prediction head class converts the vector representations from the Lan-
guage model into the predictions for the downstream task, for example, Mor-
tality prediction.

• Adaptive Model allows using one Language Model with one or multiple pre-
diction heads. For Multi-task Learning, we use multiple heads (one for each
task in the experimental setup) with a language model (CORe).

3 https://github.com/deepset-ai/FARM

Chapter 4. Implementation 29

FIGURE 4.2: The Data Handling architecture from FARM

Data Processing with FARM

In addition to the Adaptive Model, FARM allows easy pre-processing of Custom
datasets for NLP tasks. FARM has a generic pipeline at the backend, which allows
the data to flow from one stage to another, leading to better debugging capabilities
for the developers. Figure 4.2 showcases the Processor class of FARM.FARM is built
upon the Transformers library and provides additional features to simplify transfer
learning implementation and debugging for developers. Data Silo is a generic class
used to load the train, validation, and test datasets and exposes a data loader for
each dataset split.

4.1.3 Single-task Adapters and Adapter Fusion

Adapter-Transformers

We used the Adapter-Transformers v1.1 4 library in this work for implementing
Single-task Adapter modules and AdapterFusion. Like FARM, adapter-transformers
are also built upon the Transformers library from HuggingFace. However, unlike
FARM, adapter-transformers can be used as a drop-in replacement for HuggingFace
Transformers and regularly synchronizes new upstream changes. Therefore, essen-
tially, most of the files in the adapter-transformers are the same as that of the original
Transformers library. The adapter-transformers extend the transformers library by
integrating the Adapter modules into state-of-the-art language models. Similar to
Transformer’s Model Hub, AdapterHub 5 allows researchers to share pre-trained
adapters freely.

4 https://github.com/Adapter-Hub/adapter-transformers
5 https://adapterhub.ml/

Chapter 4. Implementation 30

1 from transformers import AutoModelWithHeads
2 model = AutoModelWithHeads.from_pretrained ("bert -base -uncased ")
3 model.load_adapter (" sentiment/sst -2@ukp")
4 model.set_active_adapters ("sst -2")

LISTING 4.1: Sample code for Inference using Adapter-Transformers
library

1 from transformers import AutoModelWithHeads
2

3 model = AutoModelWithHeads.from_pretrained ("bert -base -uncased ")
4 model.load_adapter ("sts/qqp@ukp", with_head=False)
5 model.load_adapter ("nli/qnli@ukp", with_head=False)
6

7 model.add_classification_head ("cb")
8

9 adapter_setup = Fuse("qqp", "qnli")
10 model.add_fusion(adapter_setup)
11 model.set_active_adapters(adapter_setup)
12 model.train_fusion(adapter_setup)

LISTING 4.2: Sample code for Training AdapterFusion using
Adapter-Transformers library

As adapter-transformers’ files are very similar to the Transformers library, it is easy
to understand the work flow and use the Adapter modules efficiently. Listing 4.1
shows that the format of working with transformers-based models like BERT is sim-
ilar to the original Transformers library. The extra lines of codes involve loading
the required adapter for the inference. model.set_active_adapters(”sst − 2”) allows
the usage of just Adapter parameters during model’s forward passes and freezes the
parameters of the underlying language model, BERT.

It is a fairly simple process to implement the AdapterFusion process using the pre-
trained Single-Task Adapters. As represented in Listing 4.2, we load the required
pre-trained single task adapters and add a classification head for predictions on the
target task. Next the Fuse composition block from the adapter-transformers library
is used to combine the required adapters followed by add_ f usion function to add
the fusion layer to the setup. Finally, set_active_adapters allows only fusion layer’s
weights to be updated during the training process.

Our experiments with both, FARM and adapter-transformers library used Hyperpa-
rameter Optimization process to improve the performance on the target tasks.

4.2 Hyperparameter Optimization (HPO)

A model hyperparameter is a characteristic of a model whose value cannot be esti-
mated from data. The value of the hyperparameter is required to be set before the
machine learning process begins (Brownlee, 2017).

Chapter 4. Implementation 31

FIGURE 4.3: The architecture for Ray Cluster. Ray cluster allows the
usage of multiple machines for an experiment using Head nodes and

Worker nodes.

Hyperparameter optimization is a process of choosing optimal parameters for a ma-
chine learning algorithm. It is also called the fine-tuning process, which allows an
algorithm to provide the best results on a specific task. In our experiments, we use
HPO to find optimal values for the following parameters:

Traditional Multi-Task learning:

• learning_rate

• warmup_steps

• gradient_accumulation_steps

• embedding_dropout

• balance_classes

ST-A and AdapterFusion:

• learning_rate

• warmup_steps

• gradient_accumulation_steps

Before detailing the implementation of HPO for our experiments, we provide a brief
introduction to the HPO parameters used for Traditional Multi-task learning and
Adapter modules below:

• The learning_rate configures the step size of the Model while converging to
solve a problem.

• The warmup_steps are a few steps the Model uses with a lower learning rate
at the beginning of the training process.

• Gradient_accumulation_steps are the number of iterations the Model needs to
wait before updating the weights of the variables. It simulates a larger batch
size, even if it does not fit on the machine. The accumulated gradients over the
mentioned steps are then used to configure the weights of the parameters.

• Embedding_dropout represents the dropout at the embedding layer to reduce
overfitting.

Chapter 4. Implementation 32

• balance_classes (Boolean variable)checks if there is a need for class weights to
counter the imbalanced data

• In addition to the hyperparameters mentioned above, we use task weights for
Traditional Multi-task learning with FARM. They were utilized in order to tune
the weight each task should contribute to each model parameter update.

Table 4.1 and 4.2 represent the search space used for Multi-task learning and Adapter-
Fusion experiments, respectively.

Search Space

learning Rate [1e-4, 1e-6]
Warmup Steps [50, 1500]
Gradient Accumulation Steps [1, 20]
Embedding Dropout [0.1, 0.3]
Balance Classes [True, False]
Task weights [0.001, 1]

TABLE 4.1: Search Space used for Hyperparameter Optimization in
Traditional Multi-task learning (FARM) experiments.

Search Space

learning Rate [1e-4, 1e-6]
Warmup Steps [50, 1500]
Gradient Accumulation Steps [1, 20]

TABLE 4.2: Search Space used for Hyperparameter Optimization in
Single-Task Adapters and AdapterFusion experiments.

4.2.1 ASHA

The most common approach to perform HPO is the Random-search and Grid-search
method. Random search chooses the sets of hyperparameters randomly in a given
search space. On the other hand, the Grid search technique builds a model for ev-
ery combination of hyperparameters specified and evaluates each model. However,
these techniques do not guarantee to find the optimal hyperparameters, and are
compute-expensive. Moreover, the HPO process becomes more complex with the
high dimensionality of the search space.

Therefore, we use ASHA (Asynchronous Successive Halving for the parallel set-
ting, Li et al., 2018) scheduler to find hyperparameters for our models. ASHA is a
State-of-the-art technique for Hyperparameter optimization. It exploits distributed
computing and aggressively terminates the low-performing trials6. It helps save the
computing resources and time for exploring the parameters that produce better re-
sults on the downstream tasks. The authors of ASHA presented results demonstrat-
ing that ASHA outperforms state-of-the-art methods such as, Fabolas, Population
Based Training, BOHB, and Vizier in a suite of HPO benchmarks.

6 A trial refers to a single set of parameters used to evaluate the model’s performance from a given
search space

Chapter 4. Implementation 33

4.2.2 Ray Tune

We employ Ray v1.4.1 to implement an ASHA scheduler for the Hyperparameter
Optimization of our models. We used the Ray cluster7 to compute multiple trials in
parallel for one experiment. It allowed us to complete Hyperparameter Optimiza-
tion experiments faster than what would have been the case with just one machine
for all HPO trials. As shown in Figure 4.3, a ray cluster includes a head node and
a set of worker nodes. The cluster’s head node is started first, and then the worker
nodes use the address of the head node to form a cluster. After a job is submitted
on the head node, the worker nodes run different trials in parallel, resulting in faster
execution of the experiment.

As mentioned in the beginning of this section, we use the DATEXIS Kubernetes clus-
ter for our experiments. Our experiments use 3 Nvidia V100 GPUs in parallel for the
Hyperparameter Optimization. 1 GPU is used to evaluate the model performance
of a single trial.

4.3 Summary

This chapter focused on describing the experimental environment of our experi-
ments. In the first section, we first described the open-source transformer-based
libraries used for the experiments. We explained the FARM’s data handling and
model architecture in detail, which makes it an optimal environment for implement-
ing Multi-task learning. Additionally, we discussed the adapter-transformers library
we used to experiment with AdapterFusion. Lastly, we provided details into the Hy-
perparameter Optimization process using the ASHA algorithm for our experiments,
followed by the Ray cluster setup used for distributed computing.

7 https://docs.ray.io/en/latest/cluster/index.html

34

Chapter 5

Benchmark, Evaluation, and
Discussion

In this chapter, we discuss the hypothesis stated by this work. We compare the
performance of Baseline models against Multi-task Learning, Single-Task Adapters
and AdapterFusion. Additionally, we perform a deep dive analysis to understand
the performance of AdapterFusion models and also assess the quality of predictions
for Diagnosis task by the different learning algorithms. Lastly, we summarize our
insights from the experiments in the discussion section.

5.1 Hypothesis

This work aims to implement the Traditional Multi-task learning and AdapterFusion
for predicting clinical outcome tasks. Additionally, this work endeavors to compare
the performance of the two approaches on the target tasks. Additionally, we strive
to understand the inter-contextual representations of the different tasks.
Based on the advantages and challenges of Multi-task Learning and AdapterFusion
discussed in Chapter 2, we hypothesize the following:

1. Multi-task learning suffers from Catastrophic Interference and does not surpass the
CORe approach.

2. AdapterFusion mitigates the Catastrophic Interference problem and surpasses the CORe
approach.

3. Additionally, we expect AdapterFusion to perform better than other approaches in
terms of training time and resource usage.

5.2 Baseline Models

CORe approach introduced by Aken et al., 2021 has surpassed all the other baselines
in the past for predicting clinical outcome tasks. In this work, we aim to improve
upon the progress made by CORe on the clinical outcome prediction tasks. There-
fore, we include CORe as one of our Baseline models. Additionally, similar to the

Chapter 5. Benchmark, Evaluation, and Discussion 35

authors of CORe, we include BERT and BioBERT, a BERT’s variant pre-trained on
biomedical text, into our list of Baseline models. As discussed in section 3.4, we pri-
marily use AUROC (Area under the ROC curve) as our Evaluation metric. For Error
Analysis, we use Precision, Recall, and F1 score metrics as well. Table 5.1 shows the
performance of the BioBERT Base and CORe on the four clinical outcome tasks. In
this work, the prediction performance (AUROC) of the Baseline models have been
accessed directly from Aken et al., 2021.

Diagnosis Procedures In-Hospital Mortality Length-of-Stay
(1266 classes) (711 classes) (2 classes) (4 classes)

BERT Base 82.08 85.84 81.13 70.40
BioBERT Base 82.81 86.36 82.55 71.59
CORe 83.54 87.65 84.04 72.53

TABLE 5.1: Baseline models, BioBERT and CORe on clinical outcome
prediction tasks in macro-averaged AUROC. The CORe approach

surpasses BioBERT Base model in all four tasks.(Aken et al., 2021)

5.3 Results

5.3.1 Experimental Setup

For both, Multi-task Learning and AdapterFusion, the following parameters stay
constant throughout all of our experiments

• Batch Size: Batch size refers to the number of training examples used in one
iteration. There has been ongoing research on how batch size affects the train-
ing process. However, large batch sizes directly affect the computing resources
required to process the data. Hence, following the authors of CORe, we use a
small batch size of 20 for all of our experiments.

• Evaluation steps: It represents the number of steps after which the model is
evaluated on the validation data during the training process. Following CORe
approach, we set Evaluation steps to 500.

• Max Sequence Length: It represents the maximum length of the sequence a
model can take as input. BERT cannot take a sequence more than a length of
512 as inputs Devlin et al., 2019. The sequences with a length of more than
512 are truncated. Therefore, for all our experiments, CORE (a variant of BERT
incorporating patient trajectories) has the maximum sequence length set to be
512. For MIMIC III data, 62% of the admission notes have a sequence length >
512.

5.3.2 Multi-task Learning

As discussed in Section 3.3, we introduce tasks to our experiments step by step,
which led to a total of eight task settings. Table 5.2 depicts the best results on the

Chapter 5. Benchmark, Evaluation, and Discussion 36

Experiment Setting

Diagnosis Procedures In-Hospital
Mortality

Length-of-
Stay

(1266 classes) (711 classes) (2 classes) (4 classes)

Baselines BioBERT Base 82.81 86.36 82.55 71.59
CORe 83.54 87.65 84.04 72.53

MTL

Diagnosis - Procedures 82.45 90.50 -
Diagnosis - MP 79.70 - 77.53 -
Diagnosis - LOS 76.55 - 57.07
Procedures - MP - 86.27 74.81 -
Procedures - LOS - 87.71 - 63.74
Diagnosis - Procedures - MP 75.86 85.34 78.46 -
Diagnosis - Procedures - LOS 77.52 87.12 - 57.51
Diagnosis - Procedures - MP - LOS 69.54 77.79 75.64 62.98

Adapters ST-A 83.98 87.21 83.15 75.45
AdapterFusion 77.15 86.91 79.30 75.15

TABLE 5.2: Performance of Baseline models (BioBERT and CORe), Traditional Multi-
task learning (MTL), Single-task Adapters (ST-A), and AdapterFusion on clinical out-
come prediction tasks in macro-averaged % AUROC using the test dataset. For Multi-
task learning, the performance worsens as new tasks are included in the setup. Adapter-
Fusion performs worse than the baselines (except on length of stay task). Single-task
Adapters surpass all experiments (including baselines) for Diagnosis and Length of Stay tasks.
ST-As produces results close to the CORe approach on Procedures and Mortality Prediction

tasks.

test dataset in the eight task settings using Traditional Multi-task Learning after Hy-
perparameter optimization. The only improvement was observed in the AUROC for Pro-
cedures task when trained with Diagnosis task in a multi-task setup. As we introduced
Mortality in the experiment, the AUROC for both Diagnosis and Procedures de-
clined compared to "Diagnosis - Procedures" task setting. Similarly, on including
Length of Stay with Diagnosis and Procedures in a multi-task setup, AUROC for
both, Diagnosis and Procedures task decreased.

We summarize our observations from the experiments on Multi-task learning ap-
proach below:

• Avoids Overfitting problem: We observe the performance of Multi-task learn-
ing on the validation data as well. It is done to validate if Multi-task learning
helps solve the problem of Overfitting. Table 5.3 depicts the best results on the
Validation dataset in the eight task settings using Traditional Multi-task Learn-
ing. On comparing the results of Multi-task learning experiments on Test and
validation data, we do not observe much variance in the % AUROC. There-
fore, we conclude that Multi-task learning helps avoid the Overfitting problem
posed by CORe, where all four tasks are trained separately.

• Suffers from Catastrophic Interference problem: After observing the results
in eight different settings with Multi-task learning, we interpreted that our ex-
periments suffered from Catastrophic Interference. Catastrophic Interference
is a common challenge faced by Multi-task learning where the deep learning
model forgets the old parameters on learning new parameters. For example, in

Chapter 5. Benchmark, Evaluation, and Discussion 37

Experiment Setting

Diagnosis Procedures In-Hospital
Mortality

Length-of-
Stay

(1266 classes) (711 classes) (2 classes) (4 classes)

MTL

Diagnosis - Procedures 82.13 90.09 -
Diagnosis - MP 80.27 - 76.35 -
Diagnosis - LOS 75.90 - 56.52
Procedures - MP - 87.09 74.49 -
Procedures - LOS - 88.70 - 63.42
Diagnosis - Procedures - MP 76.30 86.18 76.37 -
Diagnosis - Procedures - LOS 76.90 87.71 - 57.19
Diagnosis - Procedures - MP - LOS 70.80 77.55 75.71 61.67

Adapters ST-A 84.30 87.22 82.30 74.50
AdapterFusion 85.26 89.82 82.95 74.45

TABLE 5.3: Performance of Traditional Multi-task learning (MTL), Single-task Adapters
(ST-A) and AdapterFusion on clinical outcome prediction tasks in macro-averaged %
AUROC using the validation dataset. In comparison with the results on the test dataset

(Table 5.2), we observe an overfitting problem with AdapterFusion approach.

the "Diagnosis-Procedures-Mortality-Length of Stay" setting, the model tends
to worsen the performance on clinical outcome tasks compared to CORe re-
sults (where each task is trained separately) due to catastrophic interference.

• High Training Time: Moreover, we observe that the average training time for
Multi-task learning experiments is 20 hours. "Diagnosis-Procedures-Mortality-
Length of Stay" setting includes all four clinical outcome tasks and took the
longest training time (24 hours) as well.

• High Resource Usage: Additionally, we inspected that the model size using
Multi-task learning for each experiment averaged 2 GigaBytes.

To conclude, the Multi-task learning experiments on clinical outcome tasks vali-
dated our hypothesis. We observed that Multi-task learning experiments suffer from
Catastrophic Interference. Procedures is the only task that improved with Multi-task
learning experiment in "Diagnosis-Procedures" task setting.

Hyperparameter Analysis for Multi-task learning experiments

As discussed in the previous section, we perform hyperparameter optimization to
find the best values for our model parameters. While evaluating our experiments,
we observed that values for "task weights" highly impact the results across all exper-
iments in a consistent manner. Task weights represent the weight each task can con-
tribute towards updating model parameters during the training process. As men-
tioned in Table 4.1, its value can range from 0.001 to 1. We observed that tasks like
Diagnosis and Procedures require more training steps than the Length of Stay and
Mortality Prediction tasks. Hence, the "task weights" helped us in balancing the
model’s performance on multiple tasks.

Chapter 5. Benchmark, Evaluation, and Discussion 38

High task weights with optimal Learning rate work best for Diagnosis and Pro-
cedures tasks. While working on our first Multi-task experiment with Diagnosis
and Procedures tasks in the setting, we observed that they only work best when the
weights for both tasks are set to 1. The combined AUROC for Diagnosis and Proce-
dures peaks only when their weight is set to 1. There were cases when the setup did
not perform good even with the task weights set to 1 for Diagnosis and Procedures.
Therefore, we observed that finding an optimal value of the learning also creates an
high impact on the model’s performance.

Hence, an optimal learning rate combined with task weights seems to be a perfect
recipe for a model to perform better in Multi-task Learning experiments. We, there-
fore, always set the task weights for Diagnosis and procedures to 1 and optimize the
values for other tasks where necessary.

Low task weights work best for Mortality and Length of Stay tasks. Similarly, we
found from our experiments that the model provides the best performance in most
cases when task weights for Mortality Prediction and Length of Stay are set under
0.2. As they require less number of training steps compared to the Diagnosis and
Procedures tasks, low task weights for Mortality and Length of Stay tasks help in
finding the right balance for the model learning process.

5.3.3 AdapterFusion

In this section, we share our results on clinical outcome prediction using Adapter-
Fusion. As discussed in Section 3.3, we use Fusion with Single-task Adapters for
our experiments. In this approach, we first fine-tuned Adapter modules for each
task separately. In the next step, we use fine-tuned Single Task Adapters for the fu-
sion process. Unlike, Multi-task learning where each task setting had one model, for
AdapterFusion, we have four different models for each task.

AdapterFusion surpasses all experiments on Validation data for Diagnosis task.
Table 5.3 depicts the performance of ST-A and AdapterFusion on the Validation data.
We observe that the performance of ST-As and AdapterFusion is similar for Length
of Stay and Mortality prediction tasks. However, AdapterFusion surpasses ST-As
on Diagnosis and Procedures task.

AdapterFusion performs worse on Test data vs Validation data. We expected the
performance of Single-task Adapters and AdapterFusion on the test dataset to be
similar as that on the validation data. However, we found that % AUROC on the
Test dataset for AdapterFusion worsened compared to observations on the Valida-
tion data. For ST-As, the % AUROC on the test dataset was quite similar to our

Chapter 5. Benchmark, Evaluation, and Discussion 39

observations on the validation dataset. Table 5.2 represents the performance of ST-
As and AdapterFusion on the test dataset. We also include the results for Baseline
models and Multi-task learning experiments for easier comparison.

To summarize, Single-Task Adapters perform better than the AdapterFusion and
on-par with the results from CORe.

Following are our observations from the experiments on Single-Task Adapters and
AdapterFusion in terms of challenges and advantages we discussed in Chapter 1 for
AdapterFusion:

• ST-As avoid overfitting, and AdapterFusion suffers from overfitting prob-
lem: We observe that Single-Task Adapters perform equally well on the Test
data as on the Validation data. However, AdapterFusion experiments result
in worse performance on the Test Data vs. Validation data. It suggests that
AdapterFusion could lead to Overfitting. We analyze the performance of Fu-
sion experiments via Attention plots in Section 5.4.2.

• ST-As take the lowest training time: Moreover, we observe that the aver-
age training time for Multi-task learning experiments is 20 hours. "Diagnosis-
Procedures-Mortality-Length of Stay" setting includes all four clinical outcome
tasks and took the longest training time (24 hours) as well.

On average, the training time for Adapter Modules on the cluster varied be-
tween 10 to 14 hours, which is less than the Traditional Multi-task Learning
approach. However, we observed that as we included more tasks into the Fu-
sion process, the training time increased exponentially.

• ST-As have the lowest resource usage: We inspected that the model size for
Single Task Adapters were 5.7 MBs whereas for AdapterFusion models, the
size was 82 MBs. Both of them are extremely light-weight as compared to
models from Traditional Multi-task learning.

5.3.4 Summary

Lastly, we provide a task-wise summaries comparing all three approaches (Multi-
task learning, Single-task Adapters and AdapterFusion) below:

1. Length of Stay: AdapterFusion and Single Task Adapters produced better
results than Traditional Multi-task learning and the original CORe approach.

2. Diagnosis: The AUROC for Single task Adapters is slightly higher than the
CORe model. AdapterFusion produced worse than the baselines on this task.

3. Mortality: We did not find any improvement in this task either from Tradi-
tional Multi-task learning or AdapterFusion. However, the AUROC for ST-As
(83.15) is very close to that of the CORe approach (84.04).

Chapter 5. Benchmark, Evaluation, and Discussion 40

4. Procedures: "Diagnosis-Procedures" setting from Multi-task Learning surpassed
all other experiments. Additionally, the AUROC using ST-As (87.21) is close
the CORe approach (87.65).

5.4 Error Analysis

The goal of this work was to compare and analyze the performance of Multi-task
Learning with AdapterFusion in clinical domain. However, on observing the results
(AUROC) from previous section, we believe it is important to also analyze Single-
Task Adapters in depth. As Single-task Adapters surpass AdapterFusion results for
clinical outcome tasks, we study their results as well in this section.

5.4.1 Quantitative Error Analysis

We analyze the class-wise performance of Multi-task Learning, Single-Task Adapters,
and AdapterFusion for each task in this section. Additionally, as we have same tasks
in different settings using Multi-task learning, we use the results of a task from the
setting that provides its best AUROC (Table 5.2).

Diagnosis

As AUROC is highest for Diagnosis in "Diagnosis-Procedures" setting (out of all
Multi-task learning experiments), we use it to represent the performance of Multi-
task learning approach. Also, as Diagnosis is a multi-label classification task with
more than a thousand classes, we observe the Precision, Recall, and F1 score metrics
of select ICD-9 codes which have non-zero prediction probability by the "Diagnosis-
Procedures" experiment on test dataset and compare them with the performance of
other different modeling approaches.

AdapterFusion has zero prediction probability for 77% of Diagnosis ICD-9 codes.
Table 5.4 depicts the Precision, Recall and F1 scores of Traditional Multi-task Learn-
ing (MTL), Single-Task Adapters (ST-A), and AdapterFusion on select Diagnosis
ICD-9 codes. We noticed that AdapterFusion’s inability to correctly predict Diag-
nosis codes is also seen at the class level. Out of the 9 ICD-9 codes listed, Adapter-
Fusion has zero prediction probability for 7 of them on the test dataset.

ST-As are more precise at predicting Diagnosis ICD-9 codes. From Table 5.2, we
understand that the AUROC for Single Task Adapters and "Diagnosis-Procedures"
setting are very close. Likewise, on class level, we observed that Single-task Adapters
have higher precision for each ICD-9 code when compared to Multi-task learning.
It helps us in understanding that with Single-Task Adapters, we would experience
less False Positive cases of prediction than with Multi-task Learning approach.

Chapter 5. Benchmark, Evaluation, and Discussion 41

Precision Recall F1

ICD-9
code

Examples MTL ST-A Fusion MTL ST-A Fusion MTL ST-A Fusion

008 307 0.42 0.82 0.00 0.03 0.05 0.00 0.06 0.09 0.00
0084 282 0.43 0.69 0.00 0.03 0.03 0.00 0.06 0.06 0.00
038 1,251 0.56 0.59 0.51 0.51 0.53 0.43 0.54 0.56 0.47
0381 167 0.26 0.28 0.00 0.08 0.04 0.00 0.13 0.07 0.00
0384 209 0.32 0.44 0.00 0.13 0.02 0.00 0.18 0.04 0.00
0389 742 0.41 0.48 0.44 0.26 0.18 0.12 0.32 0.26 0.19
041 850 0.31 0.45 0.00 0.08 0.02 0.00 0.13 0.03 0.00
0411 238 0.22 0.50 0.00 0.03 0.00 0.00 0.06 0.01 0.00

TABLE 5.4: Precision, Recall, and F1 scores for select Diagnosis ICD-9 codes. Adapter-
Fusion has zero prediction probability for 77% of the analyzed codes. ST-As have
higher precision score compared to the Multi-task learning (MTL) experiment. We use

"Diagnosis-Procedures" task setting to represent the results for MTL in this table.

Procedures

Similar to Diagnosis, we observe the performance of Multi-task Learning, Single-
task Adapters, and AdapterFusion on select ICD-9 Procedure codes which have
non-zero prediction probability on test dataset via Multi-task learning experiment.
Once again, we choose "Diagnosis-Procedure" task setting to represent the results
for Multi-task learning approach as Procedures task performed the best in that setup
(highest AUROC across all experiments).

Multi-task learning performs best across the sample Procedure ICD-9 codes. Ta-
ble 5.5 represents the performance of the three approaches on select Procedures
codes. As expected, we notice that there are few codes (001,0017,0014) that Multi-
task learning approach can predict but Single-task Adapters and AdapterFusion
have zero prediction probability. Additionally, we noticed that on average Single-
Task Adapters have higher Precision than the other two approaches, but it but leads
to a slightly lower Recall across all the codes.

Precision Recall F1

ICD-9
code

Examples MTL ST-A Fusion MTL ST-A Fusion MTL ST-A Fusion

004 399 0.65 0.70 0.68 0.51 0.42 0.29 0.57 0.53 0.41
001 396 0.20 0.00 0.00 0.03 0.00 0.00 0.05 0.00 0.00
0040 305 0.62 0.61 0.59 0.46 0.37 0.18 0.53 0.46 0.28
006 291 0.68 0.71 0.72 0.63 0.55 0.33 0.66 0.62 0.45
0066 260 0.66 0.69 0.70 0.65 0.59 0.30 0.65 0.63 0.42
0045 178 0.55 0.50 1.00 0.31 0.19 0.01 0.40 0.27 0.01
0017 160 0.13 0.00 0.00 0.01 0.00 0.00 0.02 0.00 0.00
0014 149 0.04 0.00 0.00 0.01 0.00 0.00 0.01 0.00 0.00
015 131 0.71 0.77 0.87 0.64 0.62 0.25 0.67 0.69 0.39
013 126 0.53 0.00 0.00 0.48 0.00 0.00 0.50 0.00 0.00

TABLE 5.5: Precision, Recall, and F1 scores for select Procedures ICD-9 codes.We
use "Diagnosis-Procedures" task setting to represent the results for MTL in this table.
MTL performs best across all ICD-9 codes with high F1 score compared to Single-task

Adapters and AdapterFusion.

Chapter 5. Benchmark, Evaluation, and Discussion 42

Mortality

For Mortality Prediction, we use "Diagnosis-Procedures-Mortality" setting to repre-
sent the results of Multi-task learning approach. Table 5.6 outlines the class-wise
performance of the three approaches on the Mortality Prediction task. "0" and "1"
Labels represent the instances when the Patient did not die and when the Patient
died during the hospitalization, respectively.

ST-A has higher precision in correctly predicting the Mortality of a patient. Like
Procedures and Diagnosis, we noticed a higher Precision of Single-task Adapters
than the other two approaches for Label "1" with a slightly lower Recall. On the other
hand, AdapterFusion with higher Recall leads to fewer False Negative predictions
for Label "1".

Precision Recall F1

Label # Examples MTL ST-A Fusion MTL ST-A Fusion MTL ST-A Fusion

0 8,797 0.92 0.92 0.95 0.96 0.97 0.82 0.94 0.94 0.88
1 1,033 0.46 0.54 0.28 0.28 0.26 0.61 0.35 0.35 0.38

TABLE 5.6: Precision, Recall, and F1 scores for Mortality task labels. "0" Label repre-
sents that the patient did not die during the hospitalization and "1" represents that the
patient passed away during the hospitalization. On average, Single-task Adapters have
higher precision in predicting if the patient would die during the hospitalization. We
use "Diagnosis-Procedures-Mortality" task setting to represent the results for MTL in

this table.

Length of Stay

In the case of the Length of Stay task, we use "Procedures-Length of Stay" task to
represent the Multi-task learning approach. Table 5.7, shows the results of the three
approaches on this task. To be precise, Label "0" represents the patient’s stay at the
hospital for less than or equal to 3 days, "1" represents the stay between 4 and 7 days,
"2" represents the stay between 8 and 14 days, and "3" represents a stay of more than
14 days.

ST-A and AdapterFusion perform similar in predicting Length of Stay across all
class labels. As expected, the class-wise performance of Single-task Adapters and
AdapterFusion are similar and better than the Multi-task learning experiment. Ad-
ditionally, we notice that because due to less class variance for this task, the perfor-
mance is similar of a model across different classes. However, Label "1" (Patient’s
stay between 4 and 7 days) observes the highest F1 score using all approaches. We
believe it is due to a high frequency of Label "1" in the data.

Chapter 5. Benchmark, Evaluation, and Discussion 43

Precision Recall F1

Label # Examples MTL ST-A Fusion MTL ST-A Fusion MTL ST-A Fusion

0 1,121 0.36 0.47 0.46 0.42 0.34 0.35 0.39 0.40 0.40
1 3,328 0.43 0.47 0.48 0.51 0.50 0.53 0.47 0.49 0.50
2 2,692 0.36 0.38 0.37 0.41 0.36 0.39 0.38 0.37 0.38
3 1,656 0.33 0.36 0.39 0.31 0.41 0.36 0.32 0.38 0.37

TABLE 5.7: Precision, Recall, and F1 scores for select Mortality Prediction task labels.
Label "0" : <3, "1" : 4-7, "2": 8-14, "3": >14 days at the hospital. Single-task Adapters
and AdapterFusion have very similar scores across all labels and perform better than
the Multi-task learning approach. We use "Procedures-Length of Stay" task setting to

represent the results for MTL in this table.

5.4.2 Qualitative Error Analysis

Attention Plots for AdapterFusion

In order to better understand the workings of AdapterFusion and its worse per-
formance on the test dataset than the validation dataset, we analyze the attention
weights in the AdapterFusion layer, similar to the authors of AdapterFusion Pfeif-
fer et al., 2021. Figure 5.1 visualizes the weights of the AdapterFusion layer for all
Single-Task Adapters. The rows represent the target task and the columns repre-
sent the pre-trained Single-Task Adapters. The higher the weight of a Single-Task
Adapter (m) for a Target Task (n), Pfeiffer et al., 2021 assumes that the information
provided by Adapter m is more beneficial for Target task, n.

We list our insights for the Fusion target tasks using the Attention plots below:

1. Diagnosis has high activation for Procedures and Mortality task adapters Di-
agnosis as a task pays more relevance towards Procedures and Mortality tasks
across all layers. In Layer 4, its activation weight is highest for the Procedures
task and close to zero for the other tasks. Similarly, in the last layer (Layer 12),
its activation weight is highest for the Mortality task. The only layers where
the activations are high for its own adapter are layer 3 and 8, that too, only
slightly.

2. Procedures has high activation weight for Mortality and its own adapters
Similar to the AdapterFusion process with Diagnosis task, we observe that
Procedures also pay high relevance to the Mortality prediction task. How-
ever, unlike Diagnosis, Procedures do give high activation weight to its own
adapter. It also explains the lower performance of Diagnosis than Procedures
on the Test data using AdapterFusion.

3. Mortality has high activation for Procedures task Mortality task’s activation
weights are primarily high for the Procedures task across all layers. It also
gives relevance to the adapters of other tasks, but the weights are very low.

4. Length of Stay only gives high activation weight to its own adapter Unlike
all other three tasks, Length of Stay provides relevance to its own adapter.

Chapter 5. Benchmark, Evaluation, and Discussion 44

This also helps us understand why the performance of the other three tasks
decreased on the test data compared to the validation data, but that did not
happen for the Length of Stay task.

FIGURE 5.1: AdapterFusion activations of pretrained Single task Adapters. The rows
represent the target task and the columns represent the related task. Diagnosis task has
high activation weight for Procedures and Mortality tasks across all layers. Procedures
task has high activation for Mortality and its own adapter. Similarly, Mortality task
gives high relevance to Procedures and its own adapter. Unlike other tasks, Length
of Stay gives high relevance just to its own adapter across all layers. This analysis is
inspired by the work performed by the authors of AdapterFusion in Pfeiffer et al., 2021.

Chapter 5. Benchmark, Evaluation, and Discussion 45

Hypothesis:
High class variability could lead to poor performance for AdapterFusion. After
analyzing the AdapterFusion activation of the four tasks, we assume that the high
variability of class labels amongst the tasks led to their worse performance on the
Test Dataset vs Validation Dataset. As discussed in Section 3.2.1, Diagnosis, Proce-
dures and Mortality tasks are highly imbalanced as compared to the Length of Stay.

Validation:
AdapterFusion’s performance on Diagnosis improved upon using less ST-As. We
learnt from Traditional Multi-task learning experiments with "Diagnosis-Procedures"
task setting that the two tasks help improve each other’s performance, especially
Procedures task for which we observed 90.09 % AUROC (highest of all experiments,
Table 5.2).
Therefore, we decided to use this information when working with AdapterFusion
experiments. We used just Diagnosis and Procedures task adapters to improve on
the Diagnosis task using the Fusion process. We observed an improvement on the
Diagnosis task with an AUROC of 77.15 (including adapters for all four tasks) to
79.57 (including adapter for just Diagnosis and procedures). This led us to under-
stand that the adapters from related tasks are not helping to improve the Diagnosis
task using fusion.
Hence, we hypothesize that during the Fusion process, the models learned wrong
contextual representation by activating adapters for other tasks (except for Length of
Stay). However, we believe further research is required to validate our hypothesis.

5.4.3 Analysis of Diagnosis codes

As mentioned in Chapter 1, this goal’s objective is to study the improvements in
Diagnosis predictions. Therefore, we aimed to analyze the quality of predicted Di-
agnosis codes for 20 sample Admission notes, which were also used by Aken et al.,
2021 in their work. As Diagnosis is an extreme multi-label classification task, it is
very challenging to analyze multiple labels for different approaches. We also took
into consideration the insights shared by the authors of CORe on the incomplete
labeling of the ICD-9 codes. The authors revealed that 60% of the samples they an-
alyzed were partially under-coded, meaning that MIMIC III dataset did not include
all of the required ICD-9 codes for the Diagnosis or Procedure. Hence, we do not
specifically analyze the False Positives and False Negatives in this work.

Nevertheless, we decided to take the MIMIC III ICD-9 codes as the Ground Truth
and checked if the corresponding ICD-9 codes were predicted by Multi-task learning
(Diagnosis-Procedures setting), Single-Task Adapters, and AdapterFusion.

On average, for an Admission note, the number of Diagnosis ICD-9 codes were 65.
The maximum number of ICD-9 codes for a note were 120.

Chapter 5. Benchmark, Evaluation, and Discussion 46

AdapterFusion provides high relevance to "Hypertension" Diagnosis codes. For
AdapterFusion, we noticed that for 95% of the samples, the model predicted "401"
and "4019" ICD-9 codes which represent Hypertension. On Average, the model pre-
dicted just 5 Diagnosis code for an Admission Note. The poor performance of
the AdapterFusion model was expected from low AUROC score but this analysis
helped us understand its predictions on a deeper level. We believe the reason for
the model’s focus on Hypertension could also be because they are one of the top 10
most frequent ICD-9 codes in the MIMIC III dataset.
Given AdapterFusion’s poor quality of results on Diagnosis task and the ability of
predict only a few Diagnosis codes, the average match rate between the MIMIC III
labels and the codes predicted by AdapterFusion was 5%.

Multi-task Learning predictions has a match rate of 33% with MIMIC III labels.
On average, the Traditional Multi-task approach (Daignosis-Procedures) predicted
20 Diagnosis ICD-9 codes. The maximum number of codes predicted were 42. The
average match rate between the labels predicted by Multi-task learning model and
MIMIC III labels was 33%. On a closer evaluation, we noticed that the model was
able to predict the major Diagnosis ICD-9 codes (3 digit) for most samples, however,
it failed in predicting the ICD-9 codes with granular information (greater than 3
digits). For instance, it predicts 272 ("Disorders of lipoid metabolism") ICD-9 code
for a note but misses 2720 ("Pure hypercholesterolemia"), which was also present in
the note as text under "Medical History" section.

On average, ST-A predictions has a match rate of 38% with MIMIC III Diagnosis
codes. In the previous section, we presented that Single-Task Adapters surpassed
all or experiments and the Baselines (CORE and BioBERT) on Diagnosis task. In this
section, we further analyze the quality of its predictions.

On average, the ST-A predicted 32 Diagnosis ICD-9 codes. The maximum number of
codes predicted were 62, much higher than the Multi-task learning model. The aver-
age match rate between the labels predicted by ST-A and MIMIC III labels was 38%.
Unlike the Multi-task learning model, we noticed that the Adapter model was able
to predict ICD-9 codes with granular information more frequently. Taking the pre-
vious example we discussed for Multi-task learning approach, the ST-A predicted
ICD-9 code 2720 in addition to 272.

5.5 Discussion

As mentioned in Section 5.1, at the beginning of this work, we expected to observe
better performance on clinical outcome tasks from AdapterFusion compared to Tra-
ditional Multi-task learning. However, as we progressed with our experiments,
we observed Single-Task Adapters surpassed the results of Multi-task learning and
AdapterFusion process and resolved the challenges this work aimed to solve.

Chapter 5. Benchmark, Evaluation, and Discussion 47

In the following sections, we summarize the results of our experiments for each
problem we target to solve via this work.

ST-As use the lowest amount of training time and resources. We noted that the
Training time for each Multi-task learning experiment took approximately 20 hours.
As we include more and more tasks into the multi-task setup the training time in-
creases. For Single-task Adapters and AdapterFusion, the average training time var-
ied from 10 to 14 hours.

The Single-Task Adapter models use the lowest amount of storage space, i.e. 5.7
MBs. Collectively, separate ST-A model for each task would take up 24 MBs of total
space. For a single AdapterFusion model, the storage space is 82 MBs. A Fusion
model for all tasks collectively takes 328 MBs. Unlike, ST-A and Fusion models,
Traditional Multi-task learning models using FARM takes up 2GBs of space.

AdapterFusion experiences overfitting problem. We observed Overfitting prob-
lem only with the AdapterFusion models. It provided low AUROC on the test data
as compared to the validation data for Diagnosis, Procedures and Mortality tasks.
For Length of Stay, we observed approximately the same AUROC on the test data as
that of the validation data. We hypothesize that this is due to the high class variabil-
ity among Diagnosis, Procedures, and Mortality tasks. Additionally, on analyzing
the attention plots of the AdapterFusion models, we discovered that all three tasks
pay more relevance to the adapters of other tasks. On the other hand, during the fu-
sion process, the Length of Stay model only gives high attention to its own adapters
across all layers, which helps it perform better than the other tasks.

Only Procedures task gain information using inter-contextual representations.
One of the major goal of this work was to understand if through Multi-task learning
approaches or AdapterFusion we can understand the inter-contextual representa-
tions of the different tasks. Through our experiments with Traditional Multi-task
learning, the only improvement we observed compared to Baselines was for Proce-
dures task in "Diagnosis-Procedures" task. This helped us understand that Proce-
dures task gained information from the Diagnosis task via the multi-task setup.

Nevertheless, for all other seven Multi-task learning experiments, we observed poor
results for all tasks. The performance of the models kept on worsening as we in-
cluded more and more tasks into the setup. It reveals that the only task that gain
information in multi-task setup is Procedures from Diagnosis task. We experienced
poor performance of the models on adding Mortality and Length of Stay task to the
experimental settings.

AdapterFusion doesn’t solve catastrophic interference problem in clinical domain.
Our motivation to include AdapterFusion in this work was to validate if it helps us

Chapter 5. Benchmark, Evaluation, and Discussion 48

solve the problem of Catastrophic Interference posed by Multi-task Learning. How-
ever, as discussed in 5.5, AdapterFusion resulted in poor results on the Diagnosis,
Procedures, and Mortality tasks and did not help us in solving this problem.

To summarize, we observed best performance on Procedures task via Multi-task
Learning. However, all other experiments with Multi-task learning produced much
worse results than the Baselines. Likewise, AdapterFusion did not validate the hy-
pothesis of this work. On the other hand, Single Task Adapters outperformed other
modeling approaches as per our observations in this work. They are extremely light-
weight models with low training time. It results in faster inference which is good for
hospitals with low compute resources.

5.6 Summary

In this Chapter, we first explained this work’s hypothesis which was AdapterFu-
sion surpassing the Baselines and other experiments on the clinical outcome tasks,
on the basis of results presented the authors of AdapterFusion in Pfeiffer et al.,
2021. We presented the results of Baseline models, namely BERT Base, BioBERT,
and CORe on the four clinical outcome tasks. Next, we presented the results of our
Multi-task learning experiments and compared them with the Single-Task Adapters,
and AdapterFusion , on both the Validation data and the test data. We explain the
Catastrophic Interference problem observed in the Multi-task learning experiments
except for "Diagnosis-Procedures" setting, where the AUROC for Procedures sur-
passed that of the Baselines as well as our other experiments. It led us to understand
that the only related tasks out of the four are Diagnosis and Procedures. Addition-
ally, we discuss in detail our insights from the Hyperparameter optimization for the
multi-task learning experiments. We observed that the Task weights were highly
effective in tuning the models. For AdapterFusion, we observed overfitting prob-
lem and analyzed the attention weights of the fusion models to understand its poor
performance on the tasks. We also study the class-wise performance of the different
learning algorithms on the four clinical outcome tasks. As the primary task of this
work was to improve the results on the Diagnosis task, we analyzed the quality of
the predictions of Multi-task Learning, ST-A and Fusion process for Diagnosis ICD-9
codes. Finally, we rephrase our findings in the Discussion section.

49

Chapter 6

Conclusion and Future Work

6.1 Summary

In this work, we aimed to improve upon the advancements made by the CORe ap-
proach at predicting clinical outcome tasks. The authors of CORe proposed a novel
task setup in which they use Admission notes of a patient to predict four discharge
tasks, namely, Diagnosis, Procedures, Mortality, and Length of Stay of the patient in
the hospital. The knowledge of these outcomes at the patient’s admission time can
help doctors not overlook risks and better planning the resources of the hospital. In
the CORe approach, the authors trained four separate models for each task, leading
to problems like overfitting, high training time, and resource usage. Primarily, by
training separate models, it is impossible to understand if different tasks can gain
knowledge from each other and help in the better performance of a model.

Methodology and Implementation We experiment with Traditional Multi-task learn-
ing and AdapterFusion to resolve the challenges posed by the CORe approach. Adapter-
Fusion is a novel methodology proposed by Pfeiffer et al., 2021 to overcome the
problem of catastrophic interference posed by Traditional Multi-task learning. We
use Fusion with Single task Adapters in this work. Adapter modules introduce only
a few trainable parameters per task (less than traditional fine-tuned models), lead-
ing to high performance and low training time for the target task. We apply the
Fusion process to four separate single task adapters for our experiments. We use
the FARM library to implement Traditional Multi-task learning experiments and
newly built adapter-transformers for the Single task Adapters and AdapterFusion
approach. Similar to the authors of CORe, we used MIMIC III, a publicly available
dataset including patient admission notes.

Evaluation We hypothesized that Multi-task learning suffers from catastrophic in-
terference and does not surpass the performance of CORe. Additionally, we hy-
pothesized that AdapterFusion solves catastrophic interference and overperforms
the CORe approach. During the evaluation process, our hypothesis was validated
for the Multi-task learning approach. The only task that gained knowledge and

Chapter 6. Conclusion and Future Work 50

improved its performance via multi-task learning was the Procedures task. As we
included more and more tasks in the setup, the models faced catastrophic interfer-
ence. However, our hypothesis was proved wrong for the AdapterFusion process
in the clinical domain. We observed that AdapterFusion suffered from an overfit-
ting problem for the Diagnosis, Procedures, and Mortality Prediction task. Based on
the activation weights we studied in the Error Analysis section, we assume the poor
performance of AdapterFusion is caused by high class variability amongst the tasks.
On the other hand, we observed that the Single-task Adapters surpassed baselines
and all other experiments on Diagnosis and Length of Stay tasks. Their performance
on Procedures and Mortality tasks was also on par with the CORe approach.

Conclusion As per our experiments, the Single task Adapters worked best for pre-
dicting Diagnosis and Length of stay tasks. Additionally, their AUROC for Proce-
dures and Mortality tasks is close to that of the CORe approach. As very few param-
eters are updated during the training process for Adapters, it is not susceptible to
an overfitting problem, unlike AdapterFusion. Moreover, the training time and the
resources used by Single task Adapters are the lowest compared to all other exper-
iments, including the Baselines. Furthermore, during the error analysis process, we
noticed that Single-task Adapters are more precise with their predictions across all
tasks.

6.2 Future Work

Although Single-task Adapters showed promising results and outperformed the
Baselines on Diagnosis and Length of Stay tasks, there is still room for improve-
ment. We list below four approaches through which we can further improve the
prediction results on clinical outcome tasks.

Additional data sources We believe to further improve the performance on clini-
cal outcome prediction tasks by including information about the clinical domain via
additional datasets. Our idea is to include additional non-hospital data sources and
knowledge bases using, say, image data. We assume that one reason for not observ-
ing improvement in Diagnosis, Mortality, and Length of Stay tasks via Multi-task
learning was that the input data for all tasks was the same, and the model did not
find additional information to gain from the other tasks. The multimodal dataset
approach can help rectify the problem.

AdapterDrop In Rücklé et al., 2020, the authors propose Adapter Drop where they
drop adapters from specific layers, improving the performance on the task as well as
reducing the inference time by 30%. Dropping particular layers from our Adapter-
Fusion experiments may help improve its performance on the clinical outcome tasks.

Chapter 6. Conclusion and Future Work 51

Hyperformer In Mahabadi et al., 2021, the authors propose a hyperformer to share
adapter parameters across each task in a multi-task setup. They present that we
can learn adapter parameters across all layers via a hypernetwork depending on the
task, adapter position, and layer id in a transformer model. The authors also present
that this architecture reduces catastrophic inference, a common problem with Multi-
task learning.

52

Bibliography

Aken, Betty van et al. (Apr. 2021). “Clinical Outcome Prediction from Admission
Notes using Self-Supervised Knowledge Integration”. In: Proceedings of the 16th
Conference of the European Chapter of the Association for Computational Linguistics:
Main Volume. Online: Association for Computational Linguistics, pp. 881–893. URL:
https://aclanthology.org/2021.eacl-main.75.

Alammar, Jay (2018). “The Illustrated BERT, ELMo, and co.” In: URL: https : / /
jalammar.github.io/illustrated-bert/ (visited on 05/01/2021).

Anello, Eugenia (2021). “How to evaluate you model using the Confusion Matrix”.
In: URL: https://towardsai.net/p/data-science/how-to- evaluate- you-
model-using-the-confusion-matrix.

Brownlee, Jason (2017). “Deep Learning with Time Series Forecasting”. In: URL: https:
//machinelearningmastery.com/difference-between-a-parameter-and-a-

hyperparameter/ (visited on 07/14/2021).

Devlin, Jacob et al. (June 2019). “BERT: Pre-training of Deep Bidirectional Transform-
ers for Language Understanding”. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers). Minneapolis, Minnesota: Associa-
tion for Computational Linguistics, pp. 4171–4186. DOI: 10.18653/v1/N19-1423.
URL: https://aclanthology.org/N19-1423.

Draelos, Rachel Lea Ballantyne (2019). “Measuring Performance: AUC (AUROC)”.
In: URL: https://glassboxmedicine.com/2019/02/23/measuring-performance-
auc-auroc/.

Houlsby, Neil et al. (2019). “Parameter-Efficient Transfer Learning for NLP”. In: Pro-
ceedings of the 36th International Conference on Machine Learning. PMLR, pp. 2790–
2799. URL: http://proceedings.mlr.press/v97/houlsby19a.html.

https://aclanthology.org/2021.eacl-main.75
https://jalammar.github.io/illustrated-bert/
https://jalammar.github.io/illustrated-bert/
https://towardsai.net/p/data-science/how-to-evaluate-you-model-using-the-confusion-matrix
https://towardsai.net/p/data-science/how-to-evaluate-you-model-using-the-confusion-matrix
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://machinelearningmastery.com/difference-between-a-parameter-and-a-hyperparameter/
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/N19-1423
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
https://glassboxmedicine.com/2019/02/23/measuring-performance-auc-auroc/
http://proceedings.mlr.press/v97/houlsby19a.html

Bibliography 53

Howard, Jeremy and Sebastian Ruder (July 2018). “Universal Language Model Fine-
tuning for Text Classification”. In: Proceedings of the 56th Annual Meeting of the Asso-
ciation for Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia:
Association for Computational Linguistics, pp. 328–339. DOI: 10.18653/v1/P18-
1031. URL: https://aclanthology.org/P18-1031.

Irving, Greg et al. (2017). “International variations in primary care physician consul-
tation time: a systematic review of 67 countries”. In: BMJ Open 7.10. ISSN: 2044-
6055. DOI: 10.1136/bmjopen-2017-017902. eprint: https://bmjopen.bmj.com/
content/7/10/e017902.full.pdf. URL: https://bmjopen.bmj.com/content/7/
10/e017902.

Johnson, A., T. Pollard, and L. Shen (2016). “MIMIC-III, a freely accessible critical
care database”. In: URL: https://doi.org/10.1038/sdata.2016.35.

Lee, Jinhyuk et al. (Sept. 2019). “BioBERT: a pre-trained biomedical language repre-
sentation model for biomedical text mining”. In: Bioinformatics. ISSN: 1367-4803.
DOI: 10 . 1093 / bioinformatics / btz682. URL: https : / / doi . org / 10 . 1093 /
bioinformatics/btz682.

Lee, Joon et al. (2011). “Open-access MIMIC-II database for intensive care research”.
In: 2011 Annual International Conference of the IEEE Engineering in Medicine and Bi-
ology Society, pp. 8315–8318. DOI: 10.1109/IEMBS.2011.6092050.

Li, Liam et al. (2018). “Massively Parallel Hyperparameter Tuning”. In: ArXiv abs/1810.05934.

Mahabadi, Rabeeh Karimi et al. (2021). “Parameter-efficient Multi-task Fine-tuning
for Transformers via Shared Hypernetworks”. In: ArXiv abs/2106.04489.

McCloskey, Michael and Neal J. Cohen (1989). “Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem”. English (US). In: Psychology
of Learning and Motivation - Advances in Research and Theory 24, pp. 109–165. ISSN:
0079-7421. DOI: 10.1016/S0079-7421(08)60536-8.

Nayak, Pandu (2019). “Understanding searches better than ever before”. In: URL:
https://blog.google/products/search/search-language-understanding-

bert/.

Peters, Matthew E. et al. (June 2018). “Deep Contextualized Word Representations”.
In: Proceedings of the 2018 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers).

https://doi.org/10.18653/v1/P18-1031
https://doi.org/10.18653/v1/P18-1031
https://aclanthology.org/P18-1031
https://doi.org/10.1136/bmjopen-2017-017902
https://bmjopen.bmj.com/content/7/10/e017902.full.pdf
https://bmjopen.bmj.com/content/7/10/e017902.full.pdf
https://bmjopen.bmj.com/content/7/10/e017902
https://bmjopen.bmj.com/content/7/10/e017902
https://doi.org/10.1038/sdata.2016.35
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1093/bioinformatics/btz682
https://doi.org/10.1109/IEMBS.2011.6092050
https://doi.org/10.1016/S0079-7421(08)60536-8
https://blog.google/products/search/search-language-understanding-bert/
https://blog.google/products/search/search-language-understanding-bert/

Bibliography 54

New Orleans, Louisiana: Association for Computational Linguistics, pp. 2227–
2237. DOI: 10.18653/v1/N18-1202. URL: https://aclanthology.org/N18-1202.

Pfeiffer, Jonas et al. (2021). “AdapterFusion: Non-Destructive Task Composition for
Transfer Learning”. In: EACL.

Rosenthal, Sara, Ken Barker, and Zhicheng Liang (Nov. 2019). “Leveraging Medi-
cal Literature for Section Prediction in Electronic Health Records”. In: Proceedings
of the 2019 Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, pp. 4864–4873.
DOI: 10.18653/v1/D19-1492. URL: https://aclanthology.org/D19-1492.

Rücklé, Andreas et al. (2020). “AdapterDrop: On the Efficiency of Adapters in Trans-
formers”. In: arXiv. URL: https://arxiv.org/abs/2010.11918.

Ruder, Sebastian (2017). “An Overview of Multi-Task Learning in Deep Neural Net-
works”. In: URL: https://arxiv.org/abs/1706.05098v1.

– (2019). Neural Transfer Learning for Natural Language Processing. National University
of Galway, Ireland.

Sebastiano Barbieri James Kemp, Oscar Perez-Concha Sradha Kotwal Martin Gal-
lagher Angus Ritchie Louisa Jorm (2020). “Benchmarking Deep Learning Archi-
tectures for Predicting Readmission to the ICU and Describing Patients-at-Risk”.
In: DOI: https://doi.org/10.1038/s41598-020-58053-z.

Si, Yuqi and Kirk Roberts (2019). “Deep Patient Representation of Clinical Notes via
Multi-Task Learning for Mortality Prediction”. In: vol. 2019. American Medical
Informatics Association, p. 779.

Singh, Hardeep, Ashley N D Meyer, and Eric J Thomas (2014). “The frequency of di-
agnostic errors in outpatient care: estimations from three large observational stud-
ies involving US adult populations”. In: BMJ Quality & Safety 23.9, pp. 727–731.
ISSN: 2044-5415. DOI: 10.1136/bmjqs-2013-002627. eprint: https://qualitysafety.
bmj.com/content/23/9/727.full.pdf. URL: https://qualitysafety.bmj.com/
content/23/9/727.

Topol, Eric (2019). Deep Medicine: How Artificial Intelligence Can Make Healthcare Hu-
man Again. 1st. USA: Basic Books, Inc. ISBN: 1541644638.

Vaswani, Ashish et al. (2017). “Attention is All you Need”. In: ArXiv abs/1706.03762.

https://doi.org/10.18653/v1/N18-1202
https://aclanthology.org/N18-1202
https://doi.org/10.18653/v1/D19-1492
https://aclanthology.org/D19-1492
https://arxiv.org/abs/2010.11918
https://arxiv.org/abs/1706.05098v1
https://doi.org/https://doi.org/10.1038/s41598-020-58053-z
https://doi.org/10.1136/bmjqs-2013-002627
https://qualitysafety.bmj.com/content/23/9/727.full.pdf
https://qualitysafety.bmj.com/content/23/9/727.full.pdf
https://qualitysafety.bmj.com/content/23/9/727
https://qualitysafety.bmj.com/content/23/9/727

Bibliography 55

WHO (1975). “International classification of diseases : ninth revision, basic tabula-
tion list with alphabetic index.” In: URL: https://apps.who.int/iris/handle/
10665/39473.

https://apps.who.int/iris/handle/10665/39473
https://apps.who.int/iris/handle/10665/39473

	Introduction
	Objective
	Motivation
	Outline

	Background and Related Work
	Transfer Learning
	BERT (Bidirectional Encoder Representations from Transformers)
	BioBERT (Bidirectional Encoder Representations from Transformers for Biomedical Text Mining)
	CORe (Clinical Outcome Representations)

	Multi-Task Learning
	Adapter Modules
	Adapter Fusion
	Summary

	Methodology
	Problem Definition
	Data Pre-Processing & Distribution
	MIMIC III (Medical Information Mart for Intensive Care)

	Our Approach
	Traditional Multi-task Learning
	Single Task Adapters (ST-A)
	AdapterFusion

	Evaluation Metrics
	Summary

	Implementation
	Experimental Environment
	Implementing Transformers
	Hugging Face

	Multi-task Learning
	FARM
	Adaptive Model with FARM
	Data Processing with FARM

	Single-task Adapters and Adapter Fusion
	Adapter-Transformers

	Hyperparameter Optimization (HPO)
	ASHA
	Ray Tune

	Summary

	Benchmark, Evaluation, and Discussion
	Hypothesis
	Baseline Models
	Results
	Experimental Setup
	Multi-task Learning
	Hyperparameter Analysis for Multi-task learning experiments

	AdapterFusion
	Summary

	Error Analysis
	Quantitative Error Analysis
	Diagnosis
	Procedures
	Mortality
	Length of Stay

	Qualitative Error Analysis
	Attention Plots for AdapterFusion

	Analysis of Diagnosis codes

	Discussion
	Summary

	Conclusion and Future Work
	Summary
	Future Work

	Bibliography

