Supplemental Material for "A unifying implementation of stratum (aka strong) orthogonal arrays" by Ulrike Grömping

1 Construction by Liu and Liu (2015)

Let \mathbf{V} be an $\mathrm{OA}\left(n, m_{\text {oa }}, s, t\right)$. The algorithm of Liu and Liu (2015) proceeds as follows: Define a block diagonal $m_{\text {oa }} \times 2 k$ matrix \mathbf{R} that has

- k diagonal blocks of identical $b \times 2$ matrices, where $b=t$ for even t and $b=t+1$ for odd t,
- followed by $q=m_{\mathrm{oa}}-b k$ rows of zeroes (none if $q=0$).

The design \mathbf{D} is obtained as $\mathbf{D}=\mathbf{V R}$; remember that Liu and Liu denoted the levels in \mathbf{V} by $-(s-1),-(s-3), \ldots,+(s-1)$. Each column of the $b \times 2$ matrix holds exactly one element of $s^{0}=$ $1, s^{1}=s, \ldots, s^{t-1}$ (where the list stops at s for $s=2$), with an additional zero element for odd t; these values carry a positive or negative sign. It is thus straightforward, if a little bit tedious, to define \mathbf{A}, \mathbf{B} etc. according to the following rule:

- \mathbf{a}_{ℓ} is obtained from the unique column \mathbf{v}_{j} of \mathbf{V} for which column \mathbf{r}_{ℓ} holds the entry $\pm s^{t-1}$,
- \mathbf{b}_{ℓ} is obtained from the unique column \mathbf{v}_{j} of \mathbf{V} for which column \mathbf{r}_{ℓ} holds the entry $\pm s^{t-2}$,
- and so forth.

Where the entry in the matrix \mathbf{R} is positive, \mathbf{v}_{j} is used directly; where the entry in the matrix \mathbf{R} has a minus sign, $s-1-\mathbf{v}_{j}$ is used (reversal of levels). Equations (6) to (9) gave the results of these allocations for $t=2$ to $t=4$. The matrix constructions behind these equations are detailed below:

For a strength $2 \mathrm{OA}(n, m, s, 2)$ called \mathbf{V}, the $2\lfloor m / 2\rfloor$ columns of the matrices \mathbf{A} and \mathbf{B} are obtained as follows:

$$
\mathbf{a}_{\ell}=\left\{\begin{array}{ll}
\mathbf{v}_{\ell+1} & \ell \text { odd } \\
\mathbf{v}_{\ell-1} & \ell \text { even }
\end{array}, \quad \mathbf{b}_{\ell}=\left\{\begin{array}{ll}
\mathbf{v}_{\ell}=\mathbf{a}_{\ell+1} & \ell \text { odd } \\
s-1-\mathbf{v}_{\ell}=s-1-\mathbf{a}_{\ell-1} & \ell \text { even }
\end{array}, \quad \ell=1, \ldots, 2\lfloor m / 2\rfloor,\right.\right.
$$

where $1 \leq j \leq\lfloor m / 2\rfloor$.
For a strength $3 \mathrm{OA}(n, m, s, 3)$ called \mathbf{V}, the $2\lfloor m / 4\rfloor$ columns of the matrices \mathbf{A}, \mathbf{B} and \mathbf{C} are obtained as follows:
$\mathbf{a}_{\ell}=\left\{\begin{array}{ll}\mathbf{v}_{2 \ell+1} & \ell \text { odd } \\ \mathbf{v}_{2 \ell-3} & \ell \text { even }\end{array}, \quad \mathbf{b}_{\ell}=\mathbf{v}_{2 \ell}, \quad \mathbf{c}_{\ell}=\left\{\begin{array}{ll}\mathbf{v}_{2 \ell-1}=\mathbf{a}_{\ell+1} & \ell \text { odd } \\ s-1-\mathbf{v}_{2 \ell-1}=s-1-\mathbf{a}_{\ell-1} & \ell \text { even }\end{array}, \quad \ell=1, \ldots, 2\lfloor m / 4\rfloor\right.\right.$.

If $m-4\lfloor m / 4\rfloor=3$, an additional column can be added as follows:

$$
\mathbf{a}_{2\lfloor m / 4\rfloor+1}=\mathbf{v}_{m}, \quad \mathbf{b}_{2\lfloor m / 4\rfloor+1}=\mathbf{v}_{m-1}, \quad \mathbf{c}_{2\lfloor m / 4\rfloor+1}=\mathbf{v}_{m-2} .
$$

For a strength $4 \mathrm{OA}(n, m, s, 4)$ called \mathbf{V}, the $2\lfloor m / 4\rfloor$ columns of the matrices $\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}$ and \mathbf{A}_{4} are obtained as follows $(\ell=1, \ldots,\lfloor m / 4\rfloor)$: For odd ℓ,

$$
\mathbf{a}_{1 ; \ell}=\mathbf{v}_{2 \ell+2}, \quad \mathbf{a}_{2 ; \ell}=\mathbf{v}_{2 \ell+1}, \quad \mathbf{a}_{3 ; \ell}=\mathbf{v}_{2 \ell}=\mathbf{b}_{\ell+1}, \quad \mathbf{a}_{4 ; \ell}=\mathbf{v}_{2 \ell-1}=\mathbf{a}_{\ell+1}
$$

for even ℓ,
$\mathbf{a}_{1 ; \ell}=\mathbf{v}_{2 \ell-3}, \quad \mathbf{a}_{2 ; \ell}=\mathbf{v}_{2 \ell-2}, \quad \mathbf{a}_{3 ; \ell}=s-1-\mathbf{v}_{2 \ell-1}=s-1-\mathbf{b}_{\ell-1}, \quad \mathbf{a}_{4 ; \ell}=s-1-\mathbf{v}_{2 \ell}=s-1-\mathbf{a}_{\ell-1}$.

2 Proof of Proposition 1

Let \mathbf{A} and \mathbf{B} be $\mathrm{OA}(n, m, s, 2)$, and let \mathbf{A}^{*} and \mathbf{B}^{*} denote those matrices after subtracting $(s-1) / 2$ (i.e., centered versions of the matrices). Li et al.'s (2021) algorithm proceeds as follows:
a) Obtain an $n \times 2 m^{\prime}$ array $\mathbf{C}=\left(\mathbf{C}_{1}, \ldots, \mathbf{C}_{m^{\prime} / 2}\right)$ by interleaving the columns of \mathbf{A} and \mathbf{B} as follows:

$$
\mathbf{C}_{\ell}=\left(\mathbf{a}_{2 \ell-1}, \mathbf{b}_{2 \ell-1}, \mathbf{a}_{2 \ell}, \mathbf{b}_{2 \ell}\right), \quad \ell=1, \ldots, m^{\prime} / 2
$$

b) Obtain the column-centered matrix \mathbf{C}^{*} by subtracting $(s-1) / 2$ from each element of \mathbf{C}, so that elements are in the interval $[-(s-1) / 2,(s-1) / 2]$, i.e., \mathbf{C}^{*} interleaves \mathbf{A}^{*} and \mathbf{B}^{*}.
c) Obtain $n \times 2$ matrices $\mathbf{D}_{\ell}^{*}=C_{\ell}^{*} \mathbf{V}$, with

$$
\mathbf{V}=\left(\begin{array}{cccc}
s^{2} & s & 0 & 1 \\
-1 & 0 & s^{2} & s
\end{array}\right)^{\top}
$$

d) Obtain the $n \times m^{\prime}$ design matrix

$$
\mathbf{D}=\left(\mathbf{D}_{1}^{*}, \ldots, \mathbf{D}_{m^{\prime} / 2}^{*}\right)+\left(s^{3}-1\right) / 2
$$

The first column of \mathbf{D}_{ℓ}^{*} is the $2 \ell-1^{\text {th }}$ column of \mathbf{D}^{*},

$$
\mathbf{d}_{2 \ell-1}^{*}=s^{2} \mathbf{a}_{2 \ell-1}^{*}+s \mathbf{b}_{2 \ell-1}^{*}+\mathbf{a}_{2 \ell}^{*},
$$

the second column is

$$
\mathbf{d}_{2 \ell}^{*}=s^{2} \mathbf{a}_{2 \ell}^{*}+s \mathbf{b}_{2 \ell}^{*}-\mathbf{a}_{2 \ell-1}^{*} .
$$

Clearly, $\mathbf{D}^{*}=s^{2} \mathbf{A}^{*}+s \mathbf{B}^{*}+\mathbf{C}^{*}$ with the columns of \mathbf{C}^{*} obtained from \mathbf{A}^{*}. Now, observe that the superscript * stands for subtraction of a constant only; the only position in which this matters is the subtraction of $\mathbf{a}_{2 \ell-1}^{*}$, for which the "-" after subtraction of the center value corresponds to a reversal of the levels, which can also be written as $s-1-\mathbf{a}_{2 \ell-1}$ for the original coding $0, \ldots, s-1$.

3 Example constructions for Shi and Tang Families 2 and 3

Section 4.2 provided the recursive construction for Families 2 and 3. It will be applied to two examples in this appendix.

Example: Constructing an $\operatorname{SOA}(64,16,8,3)$ or an OSOA $(64,15,8,3+)$

$64=2^{6}$, i.e., $k=6$ is even. We need a matrix \mathbf{Y} with $2^{k-2}=16$ rows in order to obtain matrices \mathbf{A} and \mathbf{B} with 2^{k} rows. We already saw in Section 4.2 that $Y_{\mathbf{Y}}=c(2,3,1,8,10,11,9,12,14,15,13,4,6,7,5)$, which arises from applying Proposition 3 to the start vector $Y_{\mathbf{Y}_{2}}=231$ (with $k=2$ in the proposition). Corollary 1 tells us that A holds Yates matrix columns 33 to 47 (in that order) and B holds Yates matrix columns $16+Y_{\mathbf{Y}}$, and Lemma 15 tells us to use Yates matrix columns 1 to 15 for obtaining the OSOA with $n / 4-1=15$ columns. For obtaining the SOA with 16 columns, one can add Yates column 32 to \mathbf{A}, Yates column 16 to \mathbf{B}, and an arbitrary column from Yates columns 1 to 15 to matrix \mathbf{C}, so that matrix \mathbf{C} has one duplicate column pair. According to Lemma 15, this implies orthogonality for most column pairs, with the exception of a non-zero correlation for the pair that have the same \mathbf{C} matrix column.

Example: Constructing Family 2 and Family 3 designs in 32 and 128 runs (k odd)

The start values for a design in 2^{5} runs $(k=5)$ have $2^{5-2}-1$ elements and were given in Lemma 13 as $Y_{\mathbf{X}}=1234567, Y_{\mathbf{Y}}=7521643$, and $Y_{\mathbf{Z}}=6715324$.

The resulting start columns for matrices $\mathbf{A}, \mathbf{B}, \mathbf{A}+{ }_{2} \mathbf{B}$ are given as
$Y_{\mathbf{A}}=(16,17,18,19,20,21,22,23)$,
$Y_{\mathbf{B}}=(8,15,13,10,9,14,12,11)$,
$Y_{\mathbf{A}+{ }_{2} \mathbf{B}}=(24,30,31,25,29,27,26,28)$,
for an $\operatorname{SOA}(32,8,8,3)$ with properties α and β.
According to Lemma 15, eight corresponding columns for \mathbf{C} should be obtained from Yates columns 1 to 7, with one duplicate, and the resulting array has a non-zero correlation for the pair of columns that share the same \mathbf{C} column. If one only needs seven columns, omitting the first columns from \mathbf{A} and \mathbf{B} and using Yates columns 1 to 7 for \mathbf{C} yields an $\operatorname{OSOA}(32,7,8,3+)$, since the array is from Shi and Tang's Family 3 and additionally fulfills all requirements of Lemma 5 .

One step of the recursion yields
$Y_{\mathbf{X}}=(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31)$, $Y_{\mathbf{Y}}=(7,5,2,1,6,4,3,16,23,21,18,17,22,20,19,24,31,29,26,25,30,28,27,8,15,13,10,9,14,12,11)$, $Y_{\mathbf{Z}}=(6,7,1,5,3,2,4,24,30,31,25,29,27,26,28,8,14,15,9,13,11,10,12,16,22,23,17,21,19,18,20)$
for the construction of an $\operatorname{OSOA}(128,31,8,3+)$, whose Yates matrix columns are
$Y_{\mathbf{A}}=(65, \ldots, 95)$,
$Y_{\mathbf{B}}=(39,37,34,33,38,36,35,48,55,53,50,49,54,52,51,56,63,61,58,57,62,60,59,40,47,45,42,41,46,44,43)$, $Y_{\mathbf{A}+{ }_{2} \mathbf{B}}=(102,103,97,101,99,98,100,120,126,127,121,125,123,122,124,104,110,111,105,109,107,106,108$, $112,118,119,113,117,115,114,116)$.

Orthogonal columns are guaranteed by choosing Yates columns 1 to 31 for matrix \mathbf{C}. The analogous construction of the Family $2 \operatorname{SOA}(128,32,8,3)$ with properties α and β additionally uses Yates columns 64 and 32 as the first columns of matrices \mathbf{A} and \mathbf{B}, and adds another column from 1 to 31 to matrix \mathbf{C}.

